# X20CP1301, X20CP1381 and X20CP1382

## 1 General information

Compact CPUs are available with processor speeds of 200 MHz and 400 MHz. Depending on the variant, up to 256 MB RAM and up to 32 kB nonvolatile onboard RAM is available. A built-in flash drive is available to store up to 2 GB of application and other data.

All CPUs come equipped with Ethernet, USB and one RS232 interface. In both performance classes, integrated POWERLINK and CAN bus interfaces are also available. If additional fieldbus connections are needed, all CPUs can be upgraded with an interface module from the standard X20 product range. These CPUs do not require fans or batteries and are therefore maintenance-free. 30 different digital inputs and outputs and two analog inputs are integrated in the devices. One analog input can be used for PT1000 resistance temperature measurement.

- CPU is Intel® ATOM™ 400 MHz compatible with integrated I/O processor
- Ethernet, POWERLINK with poll-response chaining and USB onboard
- 1 slot for modular interface expansion
- 30 digital inputs/outputs and two analog inputs integrated in the device
- · 1/2 GB flash drive onboard
- 128/256 MB DDR3 SDRAM
- Fanless
- No battery
- · Battery-backed real-time clock

# 2 Order data



| Model number | Short description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | X20 CPUs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X20CP1301    | X20 CPU, with integrated I/O, x86-200, 128 MB DDR3 RAM, 16 kB FRAM, 1 GB flash drive onboard, 1 insert slot for X20 interface modules, 1 USB interface, 1 RS232 interface, 1 Ethernet interface 10/100 Base-T, 14 digital inputs, 24 VDC, sink, 4 digital inputs, 2 VDC, sink, 4 digital outputs, 24 VDC, 0.5 A, 5 ource, 4 digital outputs, 2 µs, 24 VDC, 0.2 A, 4 digital inputs/outputs, 24 VDC, 0.5 A, 2 analog inputs ±10 V or 0 to 20 mA / 4 to 20 mA, 1 PT1000 instead of an analog input, including power supply module, 3x X20TB1F terminal blocks, slot cover and X20 locking plate X20AC0SR1 (right) included                                                                                             |
| X20CP1381    | X20 CPU, with integrated I/O, x86-200, 128 MB DDR3 RAM, 16 kB FRAM, 2 GB flash drive on board, 1 insert slot for X20 interface modules, 2 USB interfaces, 1 RS232 interface, 1 CAN bus interface, 1 POWERLINK interface, 1 Ethernet interface 10/100 Base-T, 14 digital inputs, 24 VDC, sink, 4 digital inputs, 2 μS, 24 VDC, sink, 4 digital outputs, 24 VDC, 0.5 A, source, 4 digital outputs, 2 μS, 24 VDC, 0.2 A, 4 digital inputs/outputs, 24 VDC, 0.5 A, 2 analog inputs ±10 V or 0 to 20 mA / 4 to 20 mA, 1 PT1000 instead of an analog input, including supply module, 3x X20TB1F terminal blocks, slot cover and X20AC0SR1 locking plate (right) included                                                   |
| X20CP1382    | X20 CPU, with integrated I/O, x86-400, 256 MB DDR3 RAM, 32 kB FRAM, 2 GB flash drive on board, 2 insert slot for X20 interface modules, 2 USB interfaces, 1 RS232 interface, 1 CAN bus interface, 1 POWERLINK interface, 1 Ethernet interface 10/100 Base-T, 14 digital inputs, 24 VDC, sink, 4 digital inputs, 24 VDC, o.5 A, source, 4 digital outputs, 2 µs, 24 VDC, 0.2 A, 4 digital inputs/outputs, 24 VDC, 0.5 A, source, 4 digital outputs, 2 µs, 24 VDC, 0.2 A, 4 digital inputs/outputs, 24 VDC, 0.5 A, 2 analog inputs ±10 V or 0 to 20 mA / 4 to 20 mA, 1 PT1000 instead of an analog input, including supply module, 3x X20TB1F terminal blocks, slot cover and X20AC0SR1 locking plate (right) included |

Table 1: Order data

# **Content of delivery**

| Model number | Quantity | Short description                        |
|--------------|----------|------------------------------------------|
| -            | 1        | Interface module slot cover              |
| X20AC0SR1    | 1        | X20 locking plate, right                 |
| X20TB1F      | 3        | X20 terminal block, 16-pin, 24 VDC keyed |

Table 2: Content of delivery

# 3 Technical data

| Product ID                                                           | X20CP1301                                                                               | X20CP1381                               | X20CP1382                                                            |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------|
| Short description                                                    |                                                                                         |                                         |                                                                      |
| Interfaces                                                           | 1x RS232, 1x Ethernet,                                                                  | 1x RS232. 1x Fth                        | ernet, 1x POWER-                                                     |
| menado                                                               | 1x USB, 1x X2X Link                                                                     | ,                                       | 2X Link, 1x CAN bus                                                  |
| System module                                                        |                                                                                         | CPU                                     |                                                                      |
| General information                                                  |                                                                                         |                                         |                                                                      |
| Cooling                                                              |                                                                                         | Fanless                                 |                                                                      |
|                                                                      | 0                                                                                       |                                         | 0DADD                                                                |
| B&R ID code                                                          | 0xE35B                                                                                  | 0xE35C                                  | 0xDABB                                                               |
| Status indicators                                                    | CPU function, Ethernet,<br>RS232, CPU supply, I/O sup-<br>ply, I/O function per channel |                                         | LINK, RS232, CAN bus, CAN bus<br>/O supply, I/O function per channel |
| Diagnostics                                                          |                                                                                         |                                         |                                                                      |
| Outputs                                                              | Digital outputs: Ye                                                                     | es, using status LED and software (o    | output error status)                                                 |
| CPU function                                                         |                                                                                         | Yes, using status LED                   |                                                                      |
| CAN bus data transfer                                                | -                                                                                       | Yes, using                              | status LED                                                           |
| RS232 data transfer                                                  |                                                                                         | Yes, using status LED                   |                                                                      |
| Inputs                                                               | Analog                                                                                  | inputs: Yes, using status LED and s     | software                                                             |
| Ethernet                                                             |                                                                                         | Yes, using status LED                   |                                                                      |
| I/O supply                                                           |                                                                                         | Yes, using status LED                   |                                                                      |
| POWERLINK                                                            | _                                                                                       |                                         | status LED                                                           |
| Supply voltage monitoring                                            |                                                                                         | Yes, using status LED                   |                                                                      |
| Overtemperature                                                      |                                                                                         | Yes, using software                     |                                                                      |
| Terminating resistors                                                | _                                                                                       |                                         | status LED                                                           |
| CPU redundancy possible                                              |                                                                                         | No                                      |                                                                      |
| ACOPOS capability                                                    |                                                                                         | Yes                                     |                                                                      |
| . ,                                                                  |                                                                                         |                                         | -                                                                    |
| reACTION-capable I/O channels                                        |                                                                                         | No                                      |                                                                      |
| Visual Components support                                            |                                                                                         | Yes                                     |                                                                      |
| Power consumption without interface module and USB                   |                                                                                         | TBD                                     |                                                                      |
| Internal power consumption of the X2X Link and I/                    |                                                                                         |                                         |                                                                      |
| O supply 1)                                                          |                                                                                         |                                         |                                                                      |
| Bus                                                                  |                                                                                         | TBD                                     |                                                                      |
| Internal I/O                                                         |                                                                                         | TBD                                     |                                                                      |
| Additional power dissipation caused by the actuators (resistive) [W] |                                                                                         | -                                       |                                                                      |
| Electrical isolation                                                 |                                                                                         |                                         |                                                                      |
| Power supply                                                         |                                                                                         |                                         |                                                                      |
| I/O feed - I/O supply                                                |                                                                                         | No                                      |                                                                      |
| CPU/X2X Link feed - CPU/IF6                                          |                                                                                         | Yes                                     |                                                                      |
| IF1 - IF2                                                            |                                                                                         | Yes                                     |                                                                      |
| IF1 - IF3                                                            | -                                                                                       | Y                                       | es                                                                   |
| IF1 - IF4                                                            |                                                                                         | No                                      |                                                                      |
| IF1 - IF5                                                            | _                                                                                       |                                         | lo                                                                   |
| IF1 - IF6                                                            |                                                                                         | Yes                                     |                                                                      |
| IF1 - IF7                                                            | _                                                                                       | i .                                     | lo                                                                   |
| IF2 - IF3                                                            | _                                                                                       | I                                       | es                                                                   |
| IF2 - IF4                                                            |                                                                                         | Yes                                     |                                                                      |
| IF2 - IF5                                                            | _                                                                                       | i .                                     | es                                                                   |
| 1F2 - 1F3<br>  1F2 - 1F6                                             | _                                                                                       | Yes                                     |                                                                      |
| 1F2 - 1F6<br>  1F2 - 1F7                                             |                                                                                         | 1                                       | es                                                                   |
|                                                                      | _                                                                                       |                                         |                                                                      |
| IF3 - IF4                                                            | _                                                                                       |                                         | es                                                                   |
| IF3 - IF5                                                            | -                                                                                       |                                         | es                                                                   |
| IF3 - IF6                                                            | -                                                                                       |                                         | es                                                                   |
| IF3 - IF7                                                            | -                                                                                       |                                         | es                                                                   |
| IF4 - IF5                                                            | -                                                                                       | I .                                     | lo .                                                                 |
| IF4 - IF6                                                            |                                                                                         | Yes                                     |                                                                      |
| IF4 - IF7                                                            | -                                                                                       |                                         | lo                                                                   |
| IF5 - IF6                                                            | -                                                                                       | Y                                       | es                                                                   |
| IF5 - IF7                                                            | -                                                                                       |                                         | lo                                                                   |
| IF6 - IF7                                                            | -                                                                                       | Y                                       | es                                                                   |
| Channel - Bus                                                        |                                                                                         | Yes                                     |                                                                      |
| Channel - Channel                                                    |                                                                                         | No                                      |                                                                      |
| Channel - PLC                                                        |                                                                                         | No                                      |                                                                      |
| PLC - IF1 (RS232)                                                    |                                                                                         | No                                      |                                                                      |
| PLC - IF2 (Ethernet)                                                 |                                                                                         | Yes                                     |                                                                      |
| PLC - IF3 (POWERLINK)                                                | _                                                                                       | i .                                     | es                                                                   |
| PLC - IF4 (USB)                                                      |                                                                                         | l No                                    |                                                                      |
| PLC - IF 4 (USB)                                                     | _                                                                                       |                                         | lo                                                                   |
| PLC - IF6 (V2X Link)                                                 | _                                                                                       | Yes                                     |                                                                      |
| , ,                                                                  |                                                                                         | i e e e e e e e e e e e e e e e e e e e | lo.                                                                  |
| PLC - IF7 (CAN bus)                                                  | -                                                                                       | <u> </u>                                | lo<br>                                                               |
| Certification                                                        |                                                                                         |                                         |                                                                      |
| CE                                                                   |                                                                                         | Yes                                     |                                                                      |
| GOST-R                                                               |                                                                                         | Yes                                     |                                                                      |

Table 3: Technical data

| Product ID                      | X20CP1301 X20CP1381                                              | X20CP1382                 |  |  |  |  |  |
|---------------------------------|------------------------------------------------------------------|---------------------------|--|--|--|--|--|
| CPU and X2X Link supply         |                                                                  |                           |  |  |  |  |  |
| Input voltage                   | 24 VDC -15% / +20%                                               |                           |  |  |  |  |  |
| Input current                   | Max. TBD A                                                       |                           |  |  |  |  |  |
| Fuse                            | Integrated, cannot be replaced                                   |                           |  |  |  |  |  |
| Reverse polarity protection     | Yes                                                              |                           |  |  |  |  |  |
| X2X Link supply output          | <u></u>                                                          |                           |  |  |  |  |  |
| Nominal output power            | 2 W                                                              |                           |  |  |  |  |  |
| Parallel operation              | Yes <sup>2)</sup>                                                |                           |  |  |  |  |  |
| Redundant operation             | Yes 3)                                                           |                           |  |  |  |  |  |
| Input I/O supply                |                                                                  |                           |  |  |  |  |  |
| Input voltage                   | 24 VDC -15% / +20%                                               |                           |  |  |  |  |  |
| Fuse                            | Required line fuse: Max. 10 A, slow-bl                           | ow                        |  |  |  |  |  |
| Output I/O supply               |                                                                  |                           |  |  |  |  |  |
| Rated output voltage            | 24 VDC                                                           |                           |  |  |  |  |  |
| Permitted contact load          | 10 A                                                             |                           |  |  |  |  |  |
| Controller                      |                                                                  |                           |  |  |  |  |  |
| Real-time clock                 | Buffering for at least 300 hours at 25°C, 1 s resolution, -18 to | 28 ppm accuracy at 25°C   |  |  |  |  |  |
| FPU                             | Yes                                                              |                           |  |  |  |  |  |
| Processor                       |                                                                  | -                         |  |  |  |  |  |
| Туре                            | Vx86EX                                                           |                           |  |  |  |  |  |
| Clock frequency                 | 200 MHz                                                          | 400 MHz                   |  |  |  |  |  |
| L1 cache                        |                                                                  | •                         |  |  |  |  |  |
| Data code                       | 16 kB                                                            |                           |  |  |  |  |  |
| Program code                    | 16 kB                                                            |                           |  |  |  |  |  |
| L2 cache                        | 128 kB                                                           |                           |  |  |  |  |  |
| Integrated I/O processor        | Processes I/O data points in the background                      | ound                      |  |  |  |  |  |
| Modular interface slots         | 1                                                                |                           |  |  |  |  |  |
| Remanent variables              | 16 kB FRAM, buffering >10 years 4)                               | 32 kB FRAM, buffer-       |  |  |  |  |  |
|                                 |                                                                  | ing >10 years 4)          |  |  |  |  |  |
| Shortest task class cycle time  | 2 ms                                                             | 1 ms                      |  |  |  |  |  |
| Typical instruction cycle time  | 0.0419 µs                                                        | 0.0199 µs                 |  |  |  |  |  |
| Standard memory                 |                                                                  |                           |  |  |  |  |  |
| RAM                             | 128 MB DDR3 SDRAM                                                | 256 MB DDR3 SDRAM         |  |  |  |  |  |
| Application memory              |                                                                  | _                         |  |  |  |  |  |
| Туре                            | 1 GB eMMC flash memory                                           | 2 GB eMMC flash memory    |  |  |  |  |  |
| Data retention                  | 10 years                                                         |                           |  |  |  |  |  |
| Writable data amount            |                                                                  |                           |  |  |  |  |  |
| Guaranteed                      | 40 TB                                                            |                           |  |  |  |  |  |
| Results for 5 years             | 21.9 GB/day                                                      |                           |  |  |  |  |  |
| Guaranteed clear/write cycles   | 20,000                                                           |                           |  |  |  |  |  |
| Error correction coding (ECC)   | Yes                                                              |                           |  |  |  |  |  |
| Interfaces                      |                                                                  |                           |  |  |  |  |  |
| IF1 interface                   |                                                                  |                           |  |  |  |  |  |
| Signal                          | RS232                                                            |                           |  |  |  |  |  |
| Design                          | Connection made using 16-pin X20TB1F term                        | ninal block               |  |  |  |  |  |
| Max. distance                   | 900 m                                                            |                           |  |  |  |  |  |
| Transfer rate                   | Max. 1152 kbit/s                                                 |                           |  |  |  |  |  |
| IF2 interface                   |                                                                  |                           |  |  |  |  |  |
| Signal                          | Ethernet                                                         |                           |  |  |  |  |  |
| Design                          | 1x RJ45 shielded                                                 |                           |  |  |  |  |  |
| Cable length                    | Max. 100 m between 2 stations (segment                           | length)                   |  |  |  |  |  |
| Transfer rate                   | 10/100 Mbit/s                                                    |                           |  |  |  |  |  |
| Transmission                    | 10DACE T / 100DACE TV                                            |                           |  |  |  |  |  |
| Physical interfaces             | 10BASE-T / 100BASE-TX                                            |                           |  |  |  |  |  |
| Half-duplex                     | Yes<br>Yes                                                       |                           |  |  |  |  |  |
| Full-duplex                     | Yes                                                              |                           |  |  |  |  |  |
| Autonegotiation Auto-MDI / MDIX | Yes                                                              |                           |  |  |  |  |  |
| IF3 interface                   | 162                                                              |                           |  |  |  |  |  |
| Fieldbus                        | - POWEDLINK manag                                                | ing or controlled node    |  |  |  |  |  |
| Type                            |                                                                  | e 4 5)                    |  |  |  |  |  |
| Design                          |                                                                  | shielded                  |  |  |  |  |  |
| Cable length                    |                                                                  | stations (segment length) |  |  |  |  |  |
| Transfer rate                   |                                                                  | Mbit/s                    |  |  |  |  |  |
| Transmission                    |                                                                  | <del>-</del>              |  |  |  |  |  |
| Physical interfaces             | -   100BA                                                        | ASE-TX                    |  |  |  |  |  |
| Half-duplex                     |                                                                  | es                        |  |  |  |  |  |
| Full-duplex                     |                                                                  | 10                        |  |  |  |  |  |
| Autonegotiation                 |                                                                  | es                        |  |  |  |  |  |
| Auto-MDI / MDIX                 | I                                                                | es                        |  |  |  |  |  |
| IF4 interface                   |                                                                  |                           |  |  |  |  |  |
| Type                            | USB 1.1/2.0                                                      |                           |  |  |  |  |  |
| Design                          | Type A                                                           |                           |  |  |  |  |  |
| Max. output current             | 0.5 A                                                            |                           |  |  |  |  |  |
| 1 1 1 1                         |                                                                  |                           |  |  |  |  |  |

Table 3: Technical data

| Product ID                                              | X20CP1301                      | X20CP1381                                                                                       | X20CP1382                     |  |
|---------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------|--|
| IF5 interface                                           | AZUCPTSUT                      | A200P1301                                                                                       | A200P130Z                     |  |
| Type                                                    | _                              | USB 1.                                                                                          | 1/2 0                         |  |
| Design                                                  | _                              | Туре                                                                                            |                               |  |
| Max. output current                                     | _                              | 0.1                                                                                             |                               |  |
| IF6 interface                                           |                                |                                                                                                 |                               |  |
| Fieldbus                                                |                                | X2X Link master                                                                                 |                               |  |
| IF7 interface                                           |                                |                                                                                                 |                               |  |
| Signal                                                  | -                              | CAN                                                                                             | bus                           |  |
| Design                                                  | -                              | Connection made using 16-p                                                                      | oin X20TB1F terminal block    |  |
| Max. distance                                           | -                              | 1000                                                                                            |                               |  |
| Transfer rate                                           | -                              | Max. 1                                                                                          | =                             |  |
| Terminating resistors                                   | -                              | Integrated in                                                                                   |                               |  |
| Controller                                              | -                              | SJA 1                                                                                           | 1000                          |  |
| Digital inputs                                          |                                |                                                                                                 |                               |  |
| Quantity                                                |                                | d inputs, 4 high-speed inputs and 4 m                                                           |                               |  |
| Naminal valtage                                         | neis, cor                      | figurable as inputs or outputs using s                                                          | Boilware                      |  |
| Nominal voltage                                         |                                | 24 VDC -15% / +20%                                                                              |                               |  |
| Input voltage Input current at 24 VDC                   |                                | X1 - Standard inputs: Typ. 3.5 mA                                                               |                               |  |
| Imput current at 24 VDC                                 |                                | X2 - Standard inputs: Typ. 3.5 mA                                                               |                               |  |
|                                                         |                                | X2 - High-speed inputs: Typ. 3.5 mA                                                             |                               |  |
|                                                         |                                | X3 - Mixed channels: Typ. 2.68 mA                                                               |                               |  |
| Input filter                                            |                                |                                                                                                 |                               |  |
| Hardware                                                |                                | dard inputs and mixed channels: ≤20                                                             |                               |  |
|                                                         | , , ,                          | outs: ≤2 µs, when used as standard in                                                           |                               |  |
| Software                                                | Default 1 ms, co               | onfigurable between 0 and 25 ms in 0                                                            | 0.1 ms intervals              |  |
| Connection type                                         |                                | 1-wire connections                                                                              |                               |  |
| Input circuit                                           |                                | Sink                                                                                            |                               |  |
| Additional functions                                    |                                | X2 - High-speed digital inputs:                                                                 |                               |  |
|                                                         |                                | <ul> <li>AB counter, ABR incremental encoor<br/>rement, differential time measuremer</li> </ul> |                               |  |
| Input resistance                                        | od measurement, gate measu     | X1 - Standard inputs: 6.8 kΩ                                                                    | it, edge counters, edge times |  |
| input resistance                                        |                                | X2 - Standard inputs: 8.9 kΩ                                                                    |                               |  |
|                                                         |                                | X2 - High-speed inputs: 6.8 kΩ                                                                  |                               |  |
|                                                         |                                | X3 - Mixed channels: 8.9 kΩ                                                                     |                               |  |
| Switching threshold                                     |                                |                                                                                                 |                               |  |
| Low                                                     |                                | <5 VDC                                                                                          |                               |  |
| High                                                    |                                | >15 VDC                                                                                         |                               |  |
| AB incremental encoder                                  |                                |                                                                                                 |                               |  |
| Quantity                                                |                                | 2                                                                                               |                               |  |
| Encoder inputs                                          | 24 V, asymmetrical             |                                                                                                 |                               |  |
| Counter size                                            | 32-bit                         |                                                                                                 |                               |  |
| Input frequency                                         |                                | Max. 100 kHz                                                                                    |                               |  |
| Evaluation                                              |                                | 4x                                                                                              |                               |  |
| Encoder supply                                          |                                | Module-internal, max. 300 mA                                                                    |                               |  |
| Overload behavior of the encoder supply                 | Sho                            | ort circuit protection, overload protecti                                                       | ion                           |  |
| ABR incremental encoder                                 |                                |                                                                                                 |                               |  |
| Quantity                                                |                                | 1                                                                                               |                               |  |
| Encoder inputs  Counter size                            | -                              | 24 V, asymmetrical<br>32-bit                                                                    |                               |  |
|                                                         |                                |                                                                                                 |                               |  |
| Input frequency                                         | -                              | Max. 100 kHz                                                                                    |                               |  |
| Evaluation Encoder supply                               |                                | Module-internal, max. 300 mA                                                                    |                               |  |
| Encoder supply  Overload behavior of the encoder supply | Ch.                            | ort circuit protection, overload protecti                                                       | ion                           |  |
| Event counter                                           | Sno                            | or circuit protection, overload protecti                                                        |                               |  |
| Quantity                                                |                                | 2                                                                                               |                               |  |
| Signal form                                             | +                              | Square wave pulse                                                                               |                               |  |
| Evaluation                                              |                                | 1x                                                                                              |                               |  |
| Input frequency                                         | +                              | Max. 250 kHz                                                                                    |                               |  |
| Counter frequency                                       | +                              | 250 kHz                                                                                         |                               |  |
| Counter riequency  Counter size                         | -                              | 32-bit                                                                                          |                               |  |
| Time measurement                                        |                                | JZ-DIL                                                                                          |                               |  |
| Possible measurements                                   | Period measurement date mos    | surement, differential time measuren                                                            | nent edge counter edge times  |  |
| Measurements per module                                 | T Chou measurement, gate files | Each function up to 4x                                                                          | non, cage counter, eage times |  |
| Counter size                                            |                                | 32-bit                                                                                          |                               |  |
| Timestamp                                               | +                              | 1 µs resolution                                                                                 |                               |  |
| Signal form                                             | +                              | Square wave pulse                                                                               |                               |  |
| Analog inputs                                           |                                | Oquale wave pulse                                                                               |                               |  |
| Quantity                                                |                                | 2 6)                                                                                            |                               |  |
| Input                                                   | +10 \/ or 0 to 20              | mA / 4 to 20 mA, via different termin                                                           | nal connections               |  |
| Input type                                              | 110 V 01 0 10 20               | Differential input                                                                              | 351110000110                  |  |
| Digital converter resolution                            | <u> </u>                       | Dinerential input                                                                               |                               |  |
| Voltage                                                 | 1                              | ±12-bit                                                                                         |                               |  |
| Current                                                 |                                | 12-bit                                                                                          |                               |  |
|                                                         |                                | 12 010                                                                                          |                               |  |

Table 3: Technical data

| Product ID                                          | X20CP1301 X20CP1381 X20CP1382                                                          |
|-----------------------------------------------------|----------------------------------------------------------------------------------------|
| Conversion time                                     | 1 channel enabled: 100 μs                                                              |
|                                                     | 2 channels enabled: 200 µs                                                             |
| Output format                                       |                                                                                        |
| Data type                                           | INT                                                                                    |
| Voltage                                             | INT $0x8001 - 0x7FFF / 1 LSB = 0x0008 = 2.441 \text{ mV}$                              |
| Current                                             | INT 0x0 <u>000 - 0x7FFF / 1 LSB = 0x0008 = 4.883</u> μA                                |
| Input impedance in signal range                     |                                                                                        |
| Voltage                                             | 20 ΜΩ                                                                                  |
| Current                                             | <u> </u>                                                                               |
| Load                                                |                                                                                        |
| Voltage                                             | -                                                                                      |
| Current                                             | <300 Ω                                                                                 |
| Input protection                                    | TBD: Protection against wiring with supply voltage                                     |
| Permitted input signal                              |                                                                                        |
| Voltage                                             | Max. ±30 V                                                                             |
| Current                                             | Max. ±50 mA                                                                            |
| Output of the digital value during overload         | Configurable                                                                           |
| Conversion procedure                                | SAR                                                                                    |
| Input filter                                        | 3rd-order low pass / cutoff frequency 1 kHz                                            |
| Max. error at 25°C                                  |                                                                                        |
| Voltage                                             | <u> </u>                                                                               |
| Gain                                                | 0.18% (Rev. <c0: 0.37%)="" <sup="">7)</c0:>                                            |
| Offset                                              | 0.04% (Rev. <c0: 0.25%)="" 8)<="" td=""></c0:>                                         |
| Current                                             | 04-00-44-0450//D                                                                       |
| Gain                                                | 0 to 20 mA = 0.15% (Rev. <c0: 0.52%)="" 20="" 4="" <sup="" ma="0.25%" to="">7</c0:>    |
| Offset May paid drift                               | 0 to 20 mA = 0.1% (Rev. <c0: 0.4%)="" 20="" 4="" <sup="" ma="0.15%" to="">9)</c0:>     |
| Max. gain drift                                     | 0.047.0/100.7\                                                                         |
| Voltage                                             | 0.017 %/°C <sup>7)</sup>                                                               |
| Current                                             | 0 to 20 mA = 0.015 %/°C / 4 to 20 mA = 0.023 %/°C <sup>7)</sup>                        |
| Max. offset drift                                   | 0.000 0/ (00.0)                                                                        |
| Voltage                                             | 0.008 %/°C 8)                                                                          |
| Current                                             | 0 to 20 mA = 0.008 %/°C / 4 to 20 mA = 0.012 %/°C 9)                                   |
| Common-mode rejection                               | 70 dD                                                                                  |
| DC                                                  | 70 dB                                                                                  |
| 50 Hz                                               | 70 dB                                                                                  |
| Common-mode range                                   | ±12 V                                                                                  |
| Crosstalk between channels                          | <-70 dB                                                                                |
| Non-linearity                                       | 40.005.0/.9\                                                                           |
| Voltage<br>Current                                  | <0.025 % <sup>8)</sup> <0.05 % <sup>9)</sup>                                           |
|                                                     |                                                                                        |
| Temperature inputs resistance measurement  Quantity |                                                                                        |
| Input                                               | Resistance measurement with constant current supply for 2-wire connections             |
| -                                                   | ,                                                                                      |
| Digital converter resolution                        | 13-bit                                                                                 |
| Conversion time                                     | Only temperature input enabled: 200 μs<br>Temperature and analog input enabled: 400 μs |
| Conversion procedure                                | SAR                                                                                    |
| Output format                                       | INT or UINT for resistance measurement                                                 |
| ·                                                   | IIVI OI OIIVI IOI IESISIAIICE IIIEASUIEIIIE                                            |
| Sensor<br>PT1000                                    | -200 to 850°C                                                                          |
| Resistance measurement range                        | -200 to 650 C<br>01 to 4000 Ω                                                          |
| Temperature sensor resolution                       | TBD: 1 LSB = 0.16°C                                                                    |
| Resistance measurement resolution                   | TBD: 1 LSB = 0.16 C                                                                    |
|                                                     |                                                                                        |
| Input filter                                        | 1st-order low pass / cutoff frequency 7 Hz IEC/EN 60751                                |
| Sensor standard                                     | 1 V                                                                                    |
| Common-mode range                                   |                                                                                        |
| Linearization method                                | Internal                                                                               |
| Measuring current                                   | 1 mA                                                                                   |
| Permitted input signal                              | Short-term max. ±30 V                                                                  |
| Max. error at 25°C                                  | 0.00/ /D                                                                               |
| Gain                                                | 0.3% (Rev. <c0: 1.93%)="" <sup="">10</c0:>                                             |
| Offset                                              | 0.15% (Rev. <c0: 0.32%)="" <sup="">11)</c0:>                                           |
| Max. gain drift                                     | 0.023 %/°C <sup>10)</sup>                                                              |
| Max. offset drift                                   | 0.012 %/°C ¹¹)                                                                         |
| Non-linearity                                       | <0.05 % 11)                                                                            |
| Standardized value range for resistance measure-    | 01 Ω to 40,000 Ω                                                                       |
| ment                                                | .70.10                                                                                 |
| Crosstalk between channels                          | <-70 dB                                                                                |
| Common-mode rejection                               | . 00 /D                                                                                |
| 50 Hz                                               | >60 dB                                                                                 |
| DC                                                  | TBD                                                                                    |
| Temperature sensor standardization                  | 222 - 27222                                                                            |
| PT1000                                              | -200 to 850°C                                                                          |

Table 3: Technical data

| Product ID                                          | X20CP1301 X20CP138 <sup>2</sup>                                                                               | 1 X20CP1382                                               |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Digital outputs                                     |                                                                                                               | ,                                                         |
| Design                                              | Standard outputs and mixed channe                                                                             | els: FET positive switching                               |
|                                                     | High-speed outputs:                                                                                           |                                                           |
| Quantity                                            | 4 standard outputs, 4 high-speed ou                                                                           | utputs and 4 mixed chan-                                  |
|                                                     | nels, configurable as inputs or o                                                                             | utputs using software                                     |
| Nominal voltage                                     | 24 VDC                                                                                                        |                                                           |
| Switching voltage                                   | 24 VDC -15% / -                                                                                               | +20%                                                      |
| Nominal output current                              | Standard outputs and mixed                                                                                    |                                                           |
| Nonmai output current                               | High-speed output                                                                                             |                                                           |
| Total nominal current                               | Standard outputs and mixe                                                                                     |                                                           |
| Total Hominal Garrent                               | High-speed output                                                                                             |                                                           |
| Connection type                                     | 1-wire connect                                                                                                |                                                           |
|                                                     | Standard outputs and mixed                                                                                    |                                                           |
| Output circuit                                      | Standard outputs and mixed<br>High-speed outputs: Si                                                          |                                                           |
| Outrot and ation 12)                                |                                                                                                               |                                                           |
| Output protection 12)                               | Thermal cutoff if overcurrent or short circuit occurs<br>Internal inverse diode for switching inductive loads |                                                           |
| Pulse width modulation <sup>13)</sup>               | internal inverse diode for switching inductive loads                                                          | (See Section Switching inductive loads )                  |
|                                                     | E to GEE2E up corresponde to                                                                                  | 200 kH = to 15 H=                                         |
| Period duration                                     | 5 to 65535 µs corresponds to                                                                                  |                                                           |
| Pulse duration                                      | 0.0 to 100.0%, minim                                                                                          | ·                                                         |
| Resolution for pulse duration                       | 0.1% of the configured                                                                                        |                                                           |
| Diagnostic status                                   | Standard outputs and mixed channels: Out                                                                      | tput monitoring with 10 ms delay                          |
|                                                     | High-speed outputs: Output moni                                                                               |                                                           |
| Leakage current when switched off                   | Standard outputs and mixed                                                                                    |                                                           |
|                                                     | High-speed outputs                                                                                            |                                                           |
| R <sub>DS(on)</sub>                                 | 140 mΩ <sup>14)</sup>                                                                                         |                                                           |
| Residual voltage                                    | Standard outputs and mixed channels:                                                                          | <0.1 V at 0.5 A rated current                             |
| -                                                   | High-speed outputs: <0.9 V at                                                                                 | 0.1 A rated current                                       |
| Peak short circuit current                          | Standard outputs and mixed                                                                                    | d channels: <3 A                                          |
|                                                     | High-speed outputs                                                                                            | s: <20 A                                                  |
| Switching on after overload or short circuit cutoff | Standard outputs and mixed channels: Approx. 10 r                                                             | ms (depends on the module temperature)                    |
| g                                                   | High-speed output                                                                                             |                                                           |
| Switching delay                                     |                                                                                                               |                                                           |
| 0 -> 1                                              | Standard outputs and mixed                                                                                    | channels: <300 us                                         |
|                                                     | High-speed output                                                                                             |                                                           |
| 1 -> 0                                              | Standard outputs and mixed                                                                                    | ·                                                         |
|                                                     | High-speed output                                                                                             | •                                                         |
| Switching frequency                                 |                                                                                                               |                                                           |
| Resistive load 15)                                  | Standard outputs and mixed ch                                                                                 | annels: Max 500 Hz                                        |
| recolouve load                                      | High-speed outputs: 50 kHz, max                                                                               |                                                           |
|                                                     | "Switching frequency derating for high                                                                        |                                                           |
| Inductive load                                      | See section "Switching in                                                                                     |                                                           |
| Braking voltage when switching off inductive loads  | Standard outputs and mixed ch                                                                                 | -                                                         |
| Operating conditions                                | Otandara outputs and mixed on                                                                                 | аппсю. тур. 40 400                                        |
| <u> </u>                                            |                                                                                                               |                                                           |
| Mounting orientation                                | Week                                                                                                          |                                                           |
| Horizontal                                          | Yes                                                                                                           |                                                           |
| Vertical                                            | Yes                                                                                                           |                                                           |
| Installation at elevations above sea level          |                                                                                                               |                                                           |
| 0 to 2000 m                                         | No limitation                                                                                                 |                                                           |
| >2000 m                                             | Reduction of ambient temperature                                                                              | re by 0.5°C per 100 m                                     |
| EN 60529 protection                                 | IP20                                                                                                          |                                                           |
| Environmental conditions                            |                                                                                                               |                                                           |
| Temperature                                         |                                                                                                               |                                                           |
| Operation                                           |                                                                                                               |                                                           |
| Horizontal installation                             | -25 to 60°C                                                                                                   | -25 to 60°C (Rev.                                         |
| Tonzontal installation                              | -23 to 00 C                                                                                                   | -25 to 60 C (Rev. <d0: -25="" 55°c)<="" p="" to=""></d0:> |
| Vertical installation                               | TBD                                                                                                           | 1 20. 20 10 30 0)                                         |
|                                                     | TBD                                                                                                           |                                                           |
| Derating                                            |                                                                                                               |                                                           |
| Storage                                             | -40 to 85°C                                                                                                   |                                                           |
| Transport                                           | -40 to 85°C                                                                                                   | <del>,</del>                                              |
| Relative humidity                                   |                                                                                                               |                                                           |
| Operation                                           | 5 to 95%, non-con-                                                                                            | •                                                         |
| Storage                                             | 5 to 95%, non-con-                                                                                            | densing                                                   |
| Transport                                           | 5 to 95%, non-con-                                                                                            | densing                                                   |
| Mechanical characteristics                          |                                                                                                               |                                                           |
| Note                                                | X20 locking plate (right) inc                                                                                 | cluded in delivery                                        |
|                                                     | 3 X20 terminal blocks (16-pin)                                                                                |                                                           |
|                                                     | Interface module slot cover in                                                                                |                                                           |
| Dimensions                                          |                                                                                                               |                                                           |
| Width                                               | 164 mm                                                                                                        |                                                           |
| Height                                              | 99 mm                                                                                                         |                                                           |
|                                                     |                                                                                                               |                                                           |
| Depth                                               | 75 mm                                                                                                         | 040                                                       |
| Weight                                              | 300 g                                                                                                         | 310 g                                                     |

Table 3: Technical data

- The values specified here are maximum values. The exact calculation is available with the other module documentation for download from the B&R website. When operated in parallel, the nominal power of 2 W is not permitted to be added to the total power. 1)
- 2)
- Up to 2 W bus load. 3)
- 4) Can be set in Automation Studio.

## X20CP1301, X20CP1381 and X20CP1382

- 5) See the POWERLINK section of the AS help system under "General information, Hardware IF/LS".
- 6) To reduce power dissipation, B&R recommends bridging unused inputs on the terminals or configuring them as current signals.
- 7) Based on the current measured value.
- 8) Based on the 20 V measurement range.
- 9) Based on the 20 mA measurement range.
- 10) Based on the current resistance value.
- 11) Based on the entire resistance measurement range.
- 12) For high-speed digital outputs, derating must be applied at switching frequencies >50 kHz (see section "Switching frequency derating for high-speed digital outputs"). Overtemperature protection is not provided.
- 13) The high-speed digital outputs can be used for pulse width modulation.
- 14) Only for standard outputs and mixed channels.
- 15) Standard outputs and mixed channels: At loads ≤1 kΩ.

# 4 LED status indicators on the integrated X1 I/O slot

| Figure                                                | LED                  | Color     | Status                                                              | Description                                                                                              |  |
|-------------------------------------------------------|----------------------|-----------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|
|                                                       | E                    | Red       | On                                                                  | SERVICE mode                                                                                             |  |
|                                                       |                      |           | Double flash                                                        | BOOT mode (during firmware update) <sup>1)</sup>                                                         |  |
|                                                       | R                    | Green     | On                                                                  | Application running                                                                                      |  |
| S E R                                                 |                      | Red       | On                                                                  | Reset in progress                                                                                        |  |
| & ET PL                                               | RF                   | Yellow    | On                                                                  | SERVICE or BOOT mode                                                                                     |  |
| 20CP1382<br>ST PL<br>11 2<br>1 2<br>1 2<br>2 2<br>3 4 | SE                   | Green/Red |                                                                     | Status/Error LED. The statuses of this LED are described in section 4.1 ""S/E" LED".                     |  |
| 3 4 c s                                               | ET                   | Green     | On                                                                  | A link to the peer station has been established.                                                         |  |
| X T DC                                                | Blinking PL Green On |           | Blinking                                                            | A link to the peer station has been established. Indicates Ethernet activity is taking place on the bus. |  |
|                                                       |                      |           | Green On A link to the POWERLINK peer station has been established. |                                                                                                          |  |
|                                                       |                      |           | Blinking                                                            | A link to the POWERLINK peer station has been established. Indicates Ethernet                            |  |
|                                                       |                      |           |                                                                     | activity is taking place on the bus.                                                                     |  |
|                                                       | A1 - A2              | Green     | Off                                                                 | Open line or disconnected sensor                                                                         |  |
|                                                       |                      |           | Blinking                                                            | Input signal overflow or underflow                                                                       |  |
|                                                       |                      |           | On                                                                  | Analog/digital converter running, value OK                                                               |  |
|                                                       | 1 - 4                | Green     |                                                                     | Input state of the corresponding digital input                                                           |  |
|                                                       | C Yellow On          |           | On                                                                  | CPU transmitting or receiving data via the CAN bus interface                                             |  |
|                                                       | S                    | Yellow    | On                                                                  | CPU transmitting or receiving data via the RS232 interface                                               |  |
|                                                       | Т                    | Yellow    | On                                                                  | The terminating resistor integrated in the CPU is switched on.                                           |  |
|                                                       | DC                   | Yellow    | On                                                                  | CPU power supply OK                                                                                      |  |

Table 4: LED status indicators on the integrated X1 I/O slot

1) A firmware update can take several minutes depending on the configuration.

### 4.1 "S/E" LED

The Status/Error LED is a green/red dual LED. The LED status can have different meanings depending on the operating mode.

#### 4.1.1 Ethernet mode

In this mode, the interface is operated as an Ethernet interface.

| Green - Status | Description                                 |
|----------------|---------------------------------------------|
| On             | Interface operated as an Ethernet interface |

Table 5: Status/Error LED - Ethernet operating mode

#### 4.1.2 POWERLINK

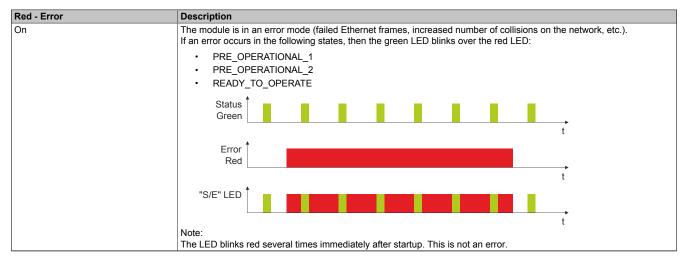



Table 6: Status/Error LED as Error LED - POWERLINK operating mode

| Green - Status                   | Description                                                                                                                                                                                 |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Off                              | Mode The module is in NOT, ACTIVE mode or:                                                                                                                                                  |
|                                  | The module is in NOT_ACTIVE mode or:                                                                                                                                                        |
|                                  | Switched off     Starting up                                                                                                                                                                |
|                                  | Not configured correctly in Automation Studio                                                                                                                                               |
|                                  | Defective                                                                                                                                                                                   |
|                                  |                                                                                                                                                                                             |
|                                  | Managing node (MN)                                                                                                                                                                          |
|                                  | The bus is monitored for POWERLINK frames. If a corresponding frame is not received within the defined time frame (timeout), then the module will immediately enter PRE_OPERATIONAL_1 mode. |
|                                  | If POWERLINK communication is detected before the time expires, however, then the MN will not be started.                                                                                   |
|                                  |                                                                                                                                                                                             |
|                                  | Controlled node (CN)  The bus is monitored for POWERLINK frames. If a corresponding frame is not received within the defined time frame                                                     |
|                                  | (timeout), then the module will immediately enter BASIC_ETHERNET mode. If POWERLINK communication is detected                                                                               |
|                                  | before this time passes, however, then the module will immediately go into PRE_OPERATIONAL_1 mode.                                                                                          |
| Green flickering (approx. 10 Hz) | Mode The module is in BASIC_ETHERNET mode. The interface is being operated as an Ethernet TCP/IP interface.                                                                                 |
|                                  | Managing node (MN)                                                                                                                                                                          |
|                                  | This state can only be changed by resetting the module.                                                                                                                                     |
|                                  | Controlled node (CN)                                                                                                                                                                        |
|                                  | If POWERLINK communication is detected while in this state, the module will transition to the PRE_OPERATIONAL_1                                                                             |
| Cingle fleeb (copyroy, 4 LIP)    | state.  Mode                                                                                                                                                                                |
| Single flash (approx. 1 Hz)      | The module is in PRE_OPERATIONAL_1 mode.                                                                                                                                                    |
|                                  | Managing node (MN) The MN starts "reduced cycle" operation. Cyclic communication is not yet taking place.                                                                                   |
|                                  | Controlled node (CN)                                                                                                                                                                        |
|                                  | The module can be configured by the MN in this state. The CN waits until it receives an SoC frame and then transitions                                                                      |
|                                  | to the PRE_OPERATIONAL_2 state.  An LED lit red in this state indicates a failure of the MN.                                                                                                |
| Double flash (approx. 1 Hz)      | Mode                                                                                                                                                                                        |
| ,                                | The module is in PRE_OPERATIONAL_2 mode.                                                                                                                                                    |
|                                  | Managing node (MN)                                                                                                                                                                          |
|                                  | The MN begins cyclic communication (cyclic input data is not yet evaluated).  The CNs are configured in this state.                                                                         |
|                                  | Controlled node (CN)                                                                                                                                                                        |
|                                  | The module can be configured by the MN in this state. A command then changes the state to READY_TO_OPERATE.                                                                                 |
| Triple flash (approx. 1 Hz)      | An LED lit red in this mode indicates a failure of the MN.  Mode                                                                                                                            |
| Triple lidell (approx. Triz)     | The module is in the READY_TO_OPERATE state.                                                                                                                                                |
|                                  | Managing node (MN) Cyclic and asynchronous communication. The received PDO data is ignored.                                                                                                 |
|                                  | Controlled node (CN)                                                                                                                                                                        |
|                                  | The module configuration is complete. Normal cyclic and asynchronous communication. The PDO data sent corresponds                                                                           |
|                                  | to the PDO mapping. Cyclic data is not yet evaluated, however.                                                                                                                              |
| On                               | An LED lit red in this mode indicates a failure of the MN.  Mode                                                                                                                            |
| Oil                              | The module is in PRE OPERATIONAL 2 mode. PDO mapping is active and cyclic data is being evaluated.                                                                                          |
| Blinking (approx. 2.5 Hz)        | Mode The module is in STOPPED mode.                                                                                                                                                         |
|                                  | Managing node (MM)                                                                                                                                                                          |
|                                  | Managing node (MN) This status is not possible for the MN.                                                                                                                                  |
|                                  | Controlled node (CN)                                                                                                                                                                        |
|                                  | No output data is produced or input data supplied. It is only possible to enter or leave this mode after the MN has given                                                                   |
|                                  | the appropriate command.                                                                                                                                                                    |

Table 7: Status/Error LED as Status LED - POWERLINK operating mode

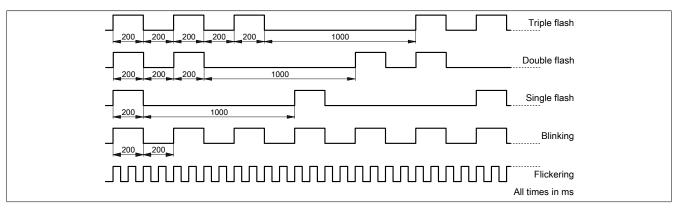



Figure 1: LED status indicators - Blinking patterns

## 4.2 System failure error codes

Incorrect configuration or defective hardware can cause a system failure error code.

The error code is indicated by the red Error LED using four switch-on phases. The switch-on phases have a duration of either 150 ms or 600 ms. The error code is output cyclically every 2 seconds.

| Error description                                                   |   | Error code indicated by red status LED |   |   |       |   |   |   |   |       |
|---------------------------------------------------------------------|---|----------------------------------------|---|---|-------|---|---|---|---|-------|
| RAM error:                                                          | • | •                                      | • | - | Pause | • | • | • | - | Pause |
| The module is defective and must be replaced.                       |   |                                        |   |   |       |   |   |   |   |       |
| Hardware error:                                                     | - | •                                      | • | - | Pause | - | • | • | - | Pause |
| The module or a system component is defective and must be replaced. |   |                                        |   |   |       |   |   |   |   |       |

Table 8: Status/Error ("S/E") LED - System failure error codes

Pause ... 2 second delay

# 5 LED status indicators on the integrated X2 I/O slot

| Figure          | LED    | Color | Status | Description                                    |
|-----------------|--------|-------|--------|------------------------------------------------|
|                 | 1 - 14 | Green |        | Input state of the corresponding digital input |
|                 |        |       |        |                                                |
| 1 2             |        |       |        |                                                |
| 3 4 5 6         |        |       |        |                                                |
| 7 8 <b>9</b> 10 |        |       |        |                                                |
| 11 12<br>13 14  |        |       |        |                                                |
| 13 14           |        |       |        |                                                |

Table 9: LED status indicators on the integrated X2 I/O slot

# 6 LED status indicators on the integrated X3 I/O slot

| Figure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LED    | Color  | Status       | Description                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------------|---------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DC     | Yellow | On           | I/O supply OK                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E      | Red    | Off          | Everything OK                                                       |
| No. of Concession, Name of Street, or other Persons, Name of Street, or ot |        |        | Double flash | No power to module                                                  |
| DC E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 - 4  | Yellow |              | Output status of the corresponding digital output                   |
| 3 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 - 8  | Yellow |              | Input or output status of the corresponding digital input or output |
| 5 6<br>7 8<br>9 10<br>11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9 - 12 | Yellow |              | Output status of the corresponding high-speed digital output        |

Table 10: LED status indicators on the integrated X3 I/O slot

# 7 Operating and connection elements

#### X20CP1301

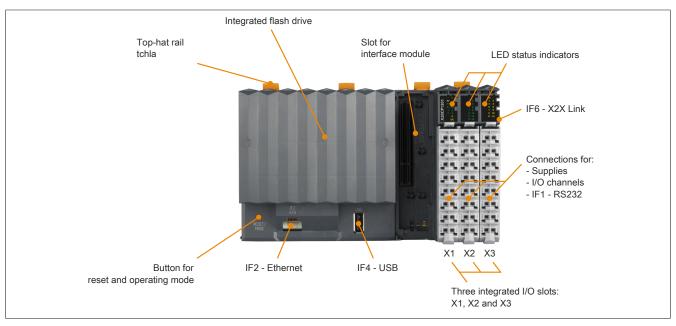



Figure 2: Operating elements for X20CP1301

#### X20CP1381 and X20CP1382

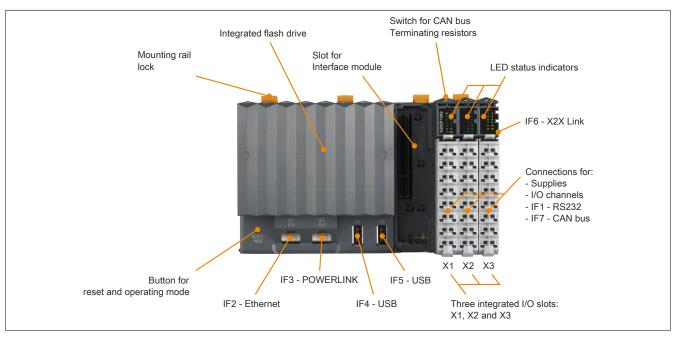



Figure 3: Operating elements for X20CP1381 and X20CP1382

## 8 Flash drive

These CPUs require application memory in order to operate. This application memory is integrated on a flash drive.

# 9 Reset and operating mode button



Figure 4: Reset and operating mode button

#### 9.1 Reset

The button must be pressed for less than 2 seconds to trigger a reset. This triggers a hardware reset on the CPU, which means that:

- · All application programs are stopped.
- · All outputs are set to zero.

The PLC then boots into service mode by default. The boot mode that follows after pressing the reset button can be defined in Automation Studio.

- Service mode (default)
- · Warm restart
- · Cold restart
- · Diagnostic mode

## 9.2 Operating mode

Three operating modes can be configured using different button sequences:

| Operating mode | Button sequence                                                                                                                                                                                                                                                                      | Description                                                                                                                                                                                      |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| BOOT           | Press the button for less than two seconds.     As soon as the "R" LED on the X1 I/O slot is lit RED, the button can be released.     Then press the button within two seconds for longer than two seconds.     As soon as the "R" LED is no longer lit, the button can be released. | The default Automation Runtime system is started and the runtim system can be installed via the online interface (Automation Studio User flash memory is deleted only after the download begins. |  |
| RUN            | Press the button for less than two seconds. As soon as the "R" LED on the X1 I/O slot is lit <b>RED</b> , the button can be released.                                                                                                                                                | RUN mode:<br>The triggering and boot behavior are the same as what happens when a hardware reset is triggered (see section 9.1 "Reset" on page 13).                                              |  |
| DIAGNOSE       | Press the button for more than 2 seconds.  The "R" LED on the X1 I/O slot lights up <b>RED</b> and then goes out.  As soon as the "R" LED is no longer lit, the button can be released.                                                                                              | Boots the CPU in diagnostic mode. Program sections in User RAM and User FlashPROM are not initialized. After diagnostic mode, the CPU always boots with a cold restart.                          |  |

Table 11: Operating mode description

# 10 CPU supply

A power supply is integrated in these compact CPUs. It has a feed for the CPU, X2X Link and the internal I/O supply. The supply for the CPU and X2X Link is electrically isolated.

The connections are located on the X3 I/O slot.

## 10.1 Compact CPU supply concept

To ensure proper operation of compact CPUs, the following items must be taken into consideration:

| The supply concept      | Description                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| CPU and I/O GND         | The GND contact is provided five times on the terminal blocks of the integrated I/O slots. All GND contacts are connected to one another. The GND contacts of the CPU and I/O supply therefore use the same voltage.                                                                                                                                                                  |  |  |
| Plug-in X20 I/O modules | Supply of X20 I/O modules that can be connected to the compact CPU:                                                                                                                                                                                                                                                                                                                   |  |  |
|                         | <ul> <li>X2X Link: Supplied by the CPU supply</li> <li>I/O channels: Supplied by the I/O supply</li> </ul>                                                                                                                                                                                                                                                                            |  |  |
| Integrated X1 I/O slot  | All digital and analog signals as well as the RS232 and CAN bus interface are supplied by the CPU supply. Their operation is therefore guaranteed even if there is no I/O supply.                                                                                                                                                                                                     |  |  |
| Integrated X2 I/O slot  | <ul> <li>All digital signals are supplied by the CPU supply. Their operation is therefore guaranteed even if there is no I/O supply.</li> <li>The encoder supply is supplied by the I/O supply. If the encoder is not to be connected to the E-stop chain, then it must be connected to an external power supply or it will be supplied by the CPU supply.</li> </ul>                 |  |  |
| Integrated X3 I/O slot  | <ul> <li>All 12 digital signals are supplied by the I/O supply.</li> <li>The status messages for each channel also work without an I/O supply. This guarantees that status messages will continue to be transferred during an E-stop.</li> <li>The status of the I/O supply is indicated by a separate status message.</li> </ul>                                                     |  |  |
|                         | Caution!  Channels 5 to 8 are designed as mixed channels. If one of these channels is being used, it is absolutely essential to ensure that there is no external voltage present on the I/O channel when the I/O supply is cut off. Otherwise, power will be regenerated back to the plus terminal of the I/O supply via the I/O channel. This will result in defective components.   |  |  |
|                         | The following solutions are available for preventing power regeneration from occurring:                                                                                                                                                                                                                                                                                               |  |  |
|                         | <ul> <li>The I/O supply of the CPU is not permitted to be switched off, which allows the reference potential to be maintained.</li> <li>If the I/O supply is switched off anyway (e.g. as part of the E-stop chain), then the sensor/actuator supplies must also be switched off. This prevents potential power regeneration and protects components from being destroyed.</li> </ul> |  |  |

Table 12: Compact CPU supply concept

## 10.2 Pinout

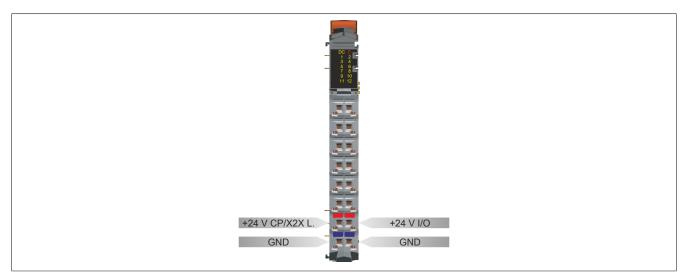



Figure 5: Integrated power supply - Pinout

# 10.3 Connection example

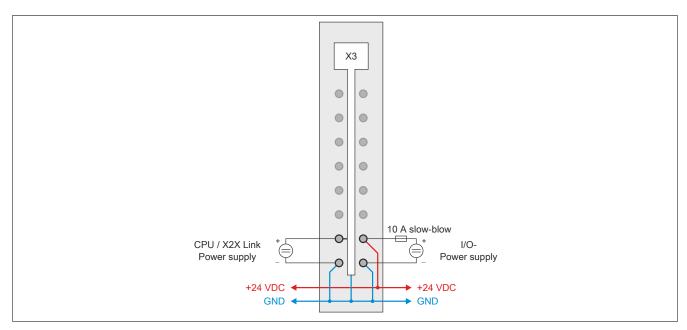



Figure 6: CPU supply - Connection example

# 11 RS232 interface (IF1)

The non-electrically isolated RS232 interface is primarily intended to serve as an online interface for communication with the programming device. It is located on the X1 I/O slot.

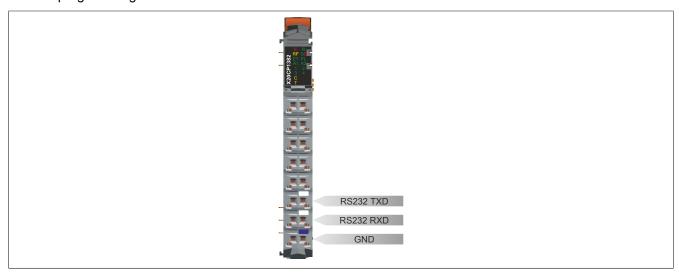



Figure 7: RS232 interface (IF1) on the X1 I/O slot - Pinout

# 12 Ethernet interface (IF2)



The IF2 interface is designed for 10BASE-T / 100BASE-TX transmission.

The INA2000 station number can be set using the Automation Studio software.

Information about cabling X20 modules with an Ethernet interface can be found in the module's download section at <a href="https://www.br-automation.com">www.br-automation.com</a>.

## Information:

The Ethernet interface (IF2) is not suited for POWERLINK (see section 13 "POWERLINK interface (IF3)" on page 17).

### Pinout

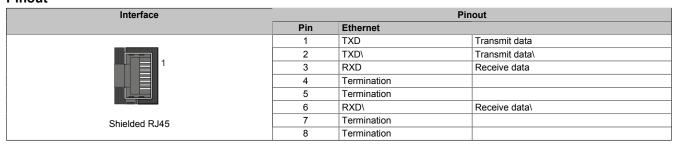



Table 13: Pinout

# 13 POWERLINK interface (IF3)

Compact CPUs X20CP1381 and X20CP1382 are equipped with a POWERLINK interface.

#### **POWERLINK**

Node numbers between 0x01 and 0xF0 are permitted. The node number can be configured using software.

| Switch position                                     | Description                                                                    |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------|--|
| 0x00                                                | Reserved, switch position not permitted                                        |  |
| 0x01 - 0xEF                                         | 0x01 - 0xEF Node number of the POWERLINK node. Operation as a controlled node. |  |
| 0xF0                                                | 0xF0 Operation as a managing node.                                             |  |
| 0xF1 - 0xFF Reserved, switch position not permitted |                                                                                |  |

Table 14: POWERLINK node number

#### **Ethernet mode**

In this mode, the interface is operated as an Ethernet interface. The INA2000 station number can be set using the Automation Studio software.

#### **Pinout**



Information about cabling X20 modules with an Ethernet interface can be found in the module's download section at <a href="https://www.br-automation.com">www.br-automation.com</a>.

| Pin | Assignment  |                |
|-----|-------------|----------------|
| 1   | RxD         | Receive data   |
| 2   | RxD\        | Receive data\  |
| 3   | TxD         | Transmit data  |
| 4   | Termination |                |
| 5   | Termination |                |
| 6   | TxD\        | Transmit data\ |
| 7   | Termination |                |
| 8   | Termination |                |

Table 15: POWERLINK interface (IF3) - Pinout

# 14 USB interfaces (IF4 and IF5)



Figure 8: USB interfaces (IF4 and IF5)

IF4 and IF5 are non-electrically isolated USB interfaces. The connection is made using a USB 2.0 interface. Only IF4 is available on the entry level CPU.

The USB interfaces can only be used for devices approved by B&R (e.g. floppy disk drive, DiskOnKey or dongle).

## Information:

- USB interfaces cannot be used for online communication with a programming device.
- Only devices isolated from GND can be connected to the USB interfaces.
- The USB interfaces can handle up to the following current:

IF4: Max. 0.5 AIF5: Max. 0.1 A

# 15 CAN bus interface (IF7)

With the exception of the entry level CPU, all compact CPUs are equipped with a non-electrically isolated CAN bus interface. It is located on the X1 I/O slot.

#### 15.1 Pinout

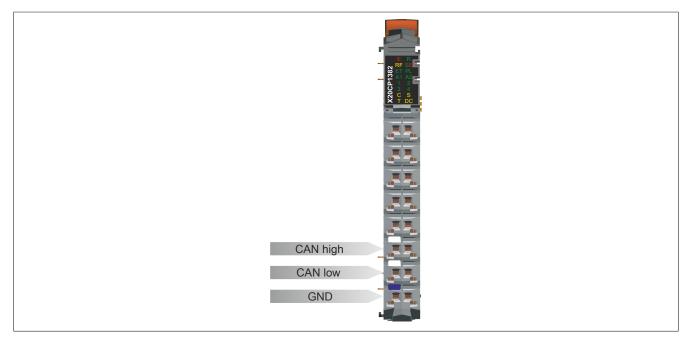



Figure 9: CAN bus interface (IF7) on the X1 I/O slot - Pinout

# 15.2 Terminating resistors

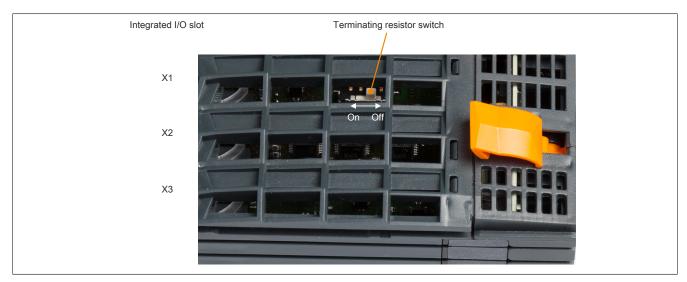



Figure 10: Switch positions for the CAN bus terminating resistor

A terminating resistor is already installed on the X1 I/O slot. It can be turned on and off with a switch on top of the housing. An active terminating resistor is indicated by the "T" LED.

## 16 Slot for interface modules

These CPUs are equipped with one slot for interface modules.

Various bus and network systems can easily be integrated into the X20 system by selecting the corresponding interface module.

## 17 Overtemperature cutoff

To prevent damage, a shutdown/reset is triggered on the CPU when the processor reaches 95°C.

The following errors are entered in the logbook:

| Error number | Error description                                   |  |
|--------------|-----------------------------------------------------|--|
| 9204         | WARNING: System halted because of temperature check |  |
| 9210         | WARNING: Boot by watchdog or manual reset           |  |

Table 16: Logbook entries after overtemperature cutoff

# 18 Data and real-time clock buffering

Compact CPUs are not designed for use with batteries. This makes them completely maintenance-free. The following features make operation without a backup battery possible.

| Data and real-time clock buffering | Type of buffering   | Note                                                                                 |
|------------------------------------|---------------------|--------------------------------------------------------------------------------------|
| Remanent variables                 | FRAM                | This FRAM stores its contents ferroelectrically. Unlike normal SRAM, this does       |
|                                    |                     | not require a battery.                                                               |
| Real-time clock                    | Gold foil capacitor | The real-time clock is buffered for approx. 1000 hours by a gold foil capacitor. The |
|                                    |                     | gold foil capacitor is completely charged after 3 continuous hours of operation.     |

## 19 Programming the system flash memory

#### **General information**

In order for the application project to be executed on the CPU, the Automation Runtime operating system, system components and application project must be installed on the flash drive.

#### Installation over an online connection

These CPUs come standard with an Automation Runtime system (with limited functionality) already installed. This runtime system is started in boot mode (see section 9 "Reset and operating mode button" on page 13 or an invalid flash drive). Some of its tasks include initializing the Ethernet and integrated serial RS232 interfaces so that it is possible to download a runtime system.

- 1. Switch on the supply voltage for the CPU. The CPU starts with the default Automation Runtime in boot mode (see section 9 "Reset and operating mode button" on page 13 or an invalid flash drive).
- 2. Establish a physical online connection between the programming device (PC or industrial PC) and the CPU (e.g. over an Ethernet network or the RS232 interface).
- 3. Before you can establish an online connection via Ethernet, the CPU must be assigned an IP address. Search for available B&R target system in the local network by selecting Online / Settings from the Automation Studio menu and then clicking the Browse targets button. The CPU should appear in the list. If the CPU has not already received an IP address from a DHCP server, right-click on it and select Set IP parameters from the shortcut menu. All necessary network configurations can be made on a temporary basis in this dialog box (should be identical to the settings defined in the project).
- 4. Configure an online connection in Automation Studio. For details about the configuration: See AS help system under "Automation Software / Communication / Online communication"
- 5. Start the download procedure by selecting **Services** from the **Project** menu. Then select **Transfer Automation Runtime** from the pop-up menu. Now follow the instructions provided by Automation Studio.

## 20 I/O channels

Compact CPUs are equipped with three integrated I/O slots. These devices have 30 digital inputs/outputs and two analog inputs. One analog input can also be used for PT1000 resistance temperature measurement.

Information about the functions of the high-speed digital inputs and outputs can be found in the section 24 "Functions of the high-speed digital inputs/outputs" on page 26.

Overview of available I/O channels:

| Integrated I/O            | Quantity | I/O slot                              | Description                                                                                    |
|---------------------------|----------|---------------------------------------|------------------------------------------------------------------------------------------------|
| Digital inputs            | 14       | X1: DI 1 to DI 4<br>X2: DI 1 to DI 10 | 24 VDC, sink, ≥0.5 ms, configurable software filter                                            |
| High-speed digital inputs | 4        | X2: DI 11 to DI 14                    | 24 VDC, sink, 2 μs, configurable software filter                                               |
| Digital outputs           | 4        | X3: DO 1 to DO 4                      | 24 VDC, 0.5 A, source                                                                          |
| Fast digital outputs      | 4        | X3: DO 9 to DO 12                     | 24 VDC, 0.2 A, 2 µs                                                                            |
| Digital inputs/outputs    | 4        | X3: DI 5 / DO 5 to DI 8 / DO 8        | 24 VDC, 0.5 A, configurable software filter                                                    |
| Analog inputs             | 2        | X1: Al 1 to Al 2                      | ±10 V / 0 to 20 mA or 4 to 20 mA, 12-bit, 1 ms                                                 |
| Temperature inputs        | 1        | X1: Al 1 (Sensor + and Sense -)       | PT1000 resistance temperature measurement Measurement takes place using the Al 1 analog input. |

Table 17: I/O channels on compact CPUs

## 21 Pinout

## X1 I/O slot - Pinout

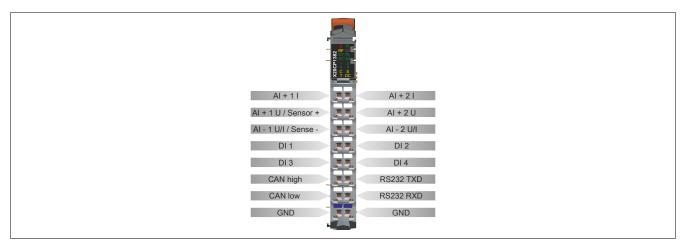



Figure 11: Pinout of the integrated X1 I/O slot

#### X2 I/O slot - Pinout

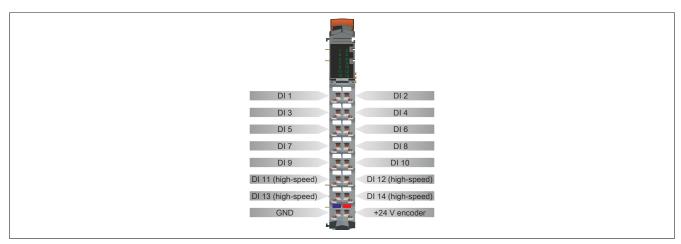



Figure 12: Pinout of the integrated X2 I/O slot

#### X3 I/O slot - Pinout

To ensure proper operation of the digital mixed channels (DI 5 / DO 5 to DI 8 / DO 8), it is important to observe the notes in section 10.1 "Compact CPU supply concept" on page 14.

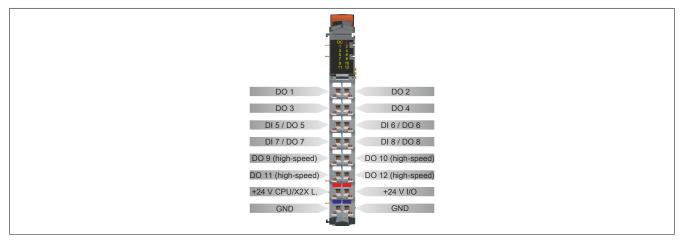



Figure 13: Pinout of the integrated X3 I/O slot

# 22 Connection examples

## 22.1 X1 I/O slot - Connection examples

## Voltage/Current measurement, digital inputs and CAN bus

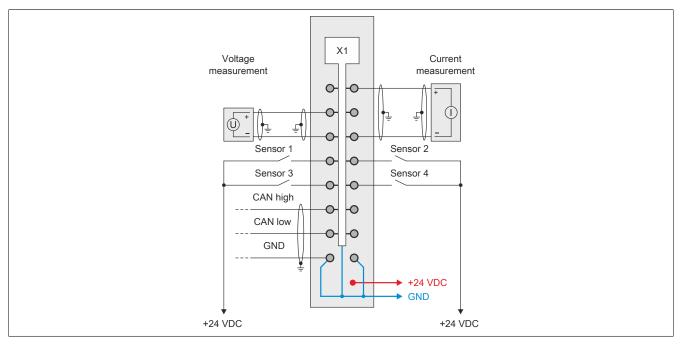



Figure 14: Connection example 1 for integrated X1 I/O slot

## PT1000 resistance temperature measurement, voltage measurement, digital inputs and RS232

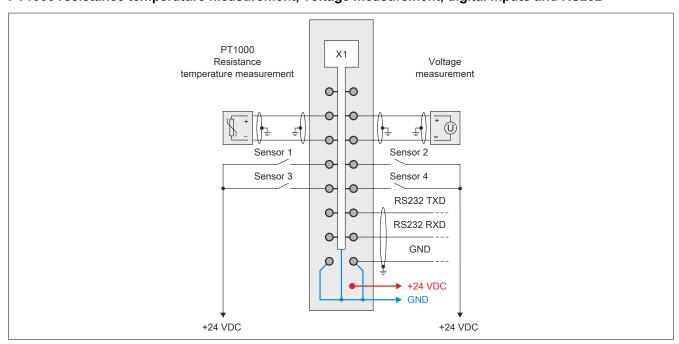



Figure 15: Connection example 2 for integrated X1 I/O slot

## 22.2 X2 I/O slot - Connection example

## Digital inputs and ABR incremental encoder

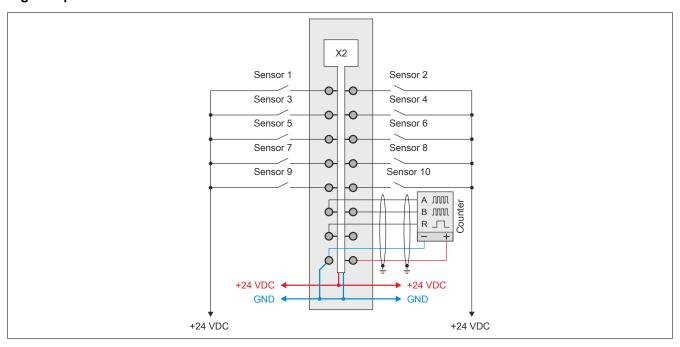



Figure 16: Connection example for integrated X2 I/O slot

## 22.3 X3 I/O slot - Connection example

## Digital inputs/outputs, direction/frequency (DF), PWM, CPU / X2X Link supply and I/O supply

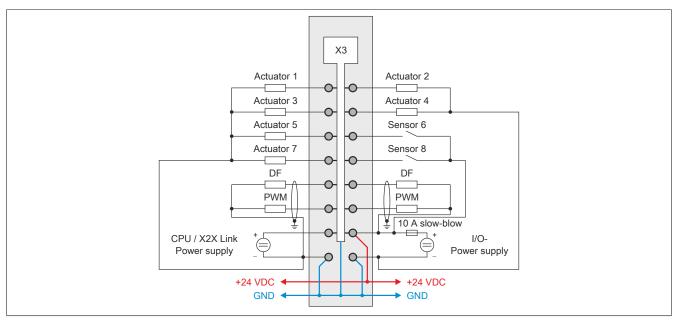



Figure 17: Connection example for integrated X3 I/O slot

# 23 X20 shielding bracket

The X20 shielding bracket (model number X20AC0FE1.0010) is installed below the X20 system. The shield is pressed against the shielding bracket using ground terminals from another manufacturer (e.g. PHOENIX or WAGO) or a cable tie.

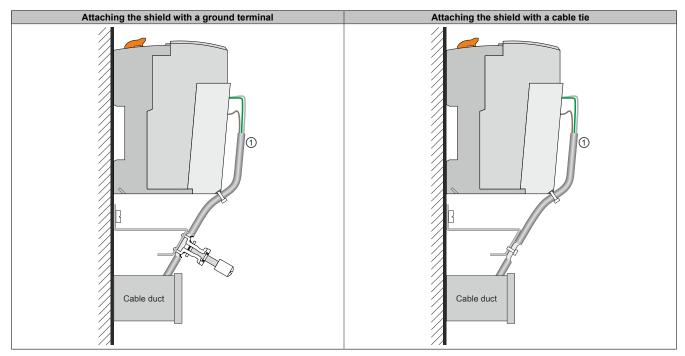



Table 18: Cable shield via X20 shielding bracket

To reduce the EMC emissions most effectively, the cable shield must reach as high as possible after the cable tie (see ① in the diagram above).

#### **Dimensions**

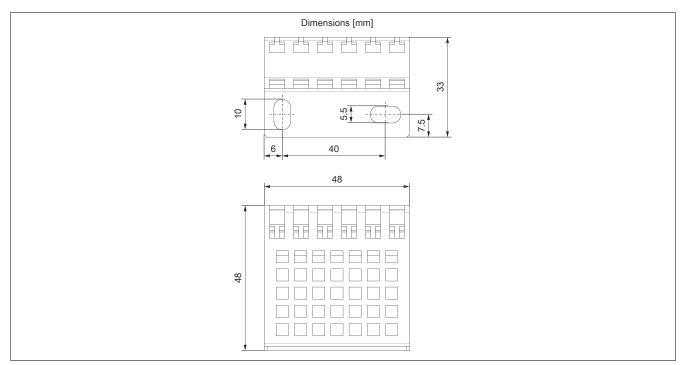



Figure 18: X20 shielding bracket - Dimensions

#### **Content of delivery**

- 10 X20 shielding brackets
- Installation template

# 24 Functions of the high-speed digital inputs/outputs

## 24.1 Functions of the high-speed digital inputs

#### Possible functions

The high-speed digital inputs DI 11 to DI 14 can be configured for the following functions:

| Channel | Counter function |   |                      |                      | Edge detection                                                                                                                                                |  |  |
|---------|------------------|---|----------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| DI 11   | Event counter 1  | A | A                    | D - Direction        | <ul> <li>Period measurement</li> <li>Gate measurement</li> <li>Differential time measurement</li> </ul> <ul> <li>Edge counters</li> <li>Edge times</li> </ul> |  |  |
| DI 12   |                  | В | В                    | F - Frequency        | Period measurement     Gate measurement     Differential time measurement                                                                                     |  |  |
| DI 13   | Event counter 2  | Α | R                    | R                    | Period measurement     Gate measurement     Differential time measurement                                                                                     |  |  |
| DI 14   |                  | В | E - Reference enable | E - Reference enable | <ul> <li>Period measurement</li> <li>Gate measurement</li> <li>Differential time measurement</li> </ul> <ul> <li>Edge counters</li> <li>Edge times</li> </ul> |  |  |

Table 19: Possible functions of the high-speed digital inputs DI 11 to DI 14

#### Please note

The following points must be taken into account to correctly configure the high-speed digital inputs:

- The counter functions are mutually exclusive. Only one type of counter function can be selected at a time. It is not possible to select two event counters (DI 11 and DI 13) at the same time together with an AB or DF counter (each on DI 13 and DI 14)!
- It is possible to select a counter function and edge detection at the same time.
- A position or counter latch is possible when configuring the high-speed inputs as a 2x event counter, ABR incremental encoder or DF function.

## **Examples of possible configurations**

| Channel | Configuration 1                                                           | Configuration 2                                    | Configuration 3      | Configuration 4      |
|---------|---------------------------------------------------------------------------|----------------------------------------------------|----------------------|----------------------|
| DI 11   | Event counter 1                                                           | <ul><li>Edge counters</li><li>Edge times</li></ul> | A                    | D                    |
| DI 12   | Period measurement     Gate measurement     Differential time measurement | Edge counters     Edge times                       | В                    | F                    |
| DI 13   | Event counter 2                                                           | A                                                  | R                    | R                    |
| DI 14   | Period measurement     Gate measurement     Differential time measurement | В                                                  | E - Reference enable | E - Reference enable |

| Channel | Configuration 5                                                           | Configuration 6                                                           | Configuration 7                                                           | Configuration 8                                                           |
|---------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| DI 11   | Event counter 1                                                           | A                                                                         | Period measurement     Gate measurement     Differential time measurement | D - Direction                                                             |
| DI 12   | Edge counters     Edge times                                              | В                                                                         | Period measurement     Gate measurement     Differential time measurement | F - Frequency                                                             |
| DI 13   | Event counter 2                                                           | Period measurement     Gate measurement     Differential time measurement | Edge counters     Edge times                                              | Edge counters     Edge times                                              |
| DI 14   | Period measurement     Gate measurement     Differential time measurement | Edge counters     Edge times                                              | Edge counters     Edge times                                              | Period measurement     Gate measurement     Differential time measurement |

# 24.2 Functions of the high-speed digital outputs

## **Possible functions**

The high-speed digital outputs DO 9 to DO 12 can be configured for the following functions:

| Channel | Function                     |               |
|---------|------------------------------|---------------|
| DO 9    | PWM - Pulse width modulation | D - Direction |
| DO 10   | PWM - Pulse width modulation | F - Frequency |
| DO 11   | PWM - Pulse width modulation | D - Direction |
| DO 12   | PWM - Pulse width modulation | F - Frequency |

Table 20: Possible functions of the high-speed digital inputs DO 9 to DO 12

## **Examples of possible configurations**

| Channel | Configuration 1              | Configuration 2              | Configuration 3              | Configuration 4 |
|---------|------------------------------|------------------------------|------------------------------|-----------------|
| DO 9    | PWM - Pulse width modulation | D - Direction                | PWM - Pulse width modulation | D - Direction   |
| DO 10   | PWM - Pulse width modulation | F - Frequency                | PWM - Pulse width modulation | F - Frequency   |
| DO 11   | D - Direction                | PWM - Pulse width modulation | PWM - Pulse width modulation | D - Direction   |
| DO 12   | F - Frequency                | PWM - Pulse width modulation | PWM - Pulse width modulation | F - Frequency   |

# 25 Input/Output circuit diagram

## 25.1 Input circuit diagram of the analog inputs and temperature input on X1

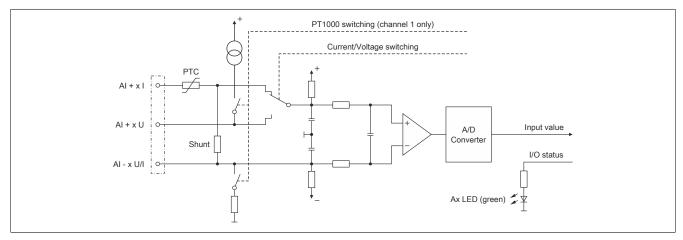



Figure 19: Input circuit diagram of the analog inputs and temperature input on the integrated X1 I/O slot

## 25.2 Input circuit diagram of the digital inputs

## 25.2.1 Input circuit diagram of the digital inputs on X1 and the high-speed digital inputs on X2

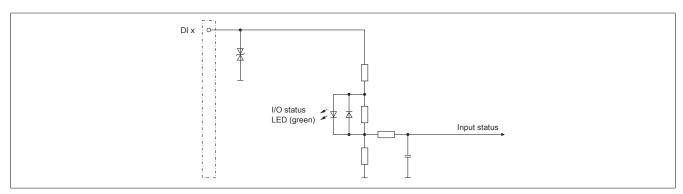



Figure 20: Input circuit diagram of the digital inputs on the integrated X1 I/O slot and the high-speed digital inputs on the integrated X2 I/O slot

## 25.2.2 Input circuit diagram of the digital inputs on X2

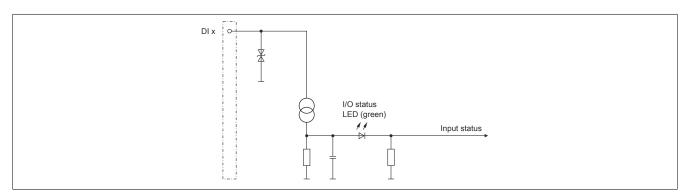



Figure 21: Input circuit diagram of the digital inputs on the integrated X2 I/O slot

## 25.3 Output circuit diagram of the digital outputs

## 25.3.1 Output circuit diagram of the digital outputs on X3

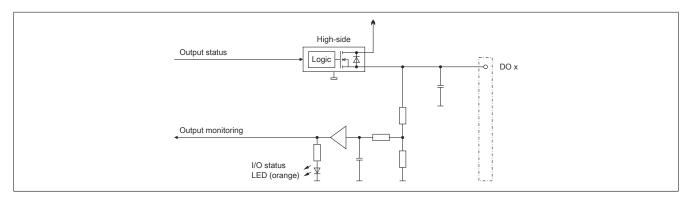



Figure 22: Output circuit diagram of the digital outputs on the integrated X3 I/O slot

## 25.3.2 Output circuit diagram of the high-speed digital outputs on X3

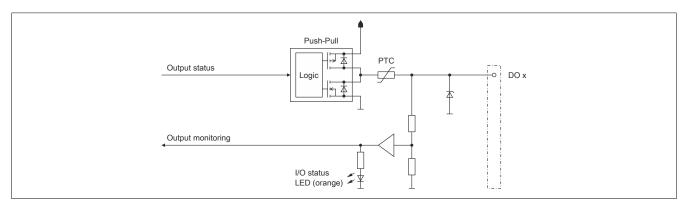



Figure 23: Output circuit diagram of the fast digital outputs on the integrated X3 I/O slot

### 25.4 Input/Output circuit diagram of the digital mixed channels on X3

To ensure proper operation of the digital mixed channels (DI 5 / DO 5 to DI 8 / DO 8), it is important to observe the notes in section 10.1 "Compact CPU supply concept" on page 14.

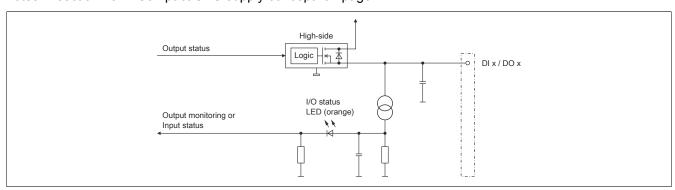



Figure 24: Input/Output circuit diagram of the digital mixed channels on the integrated X3 I/O slot

## 25.5 Circuit diagram for the encoder supply on X2

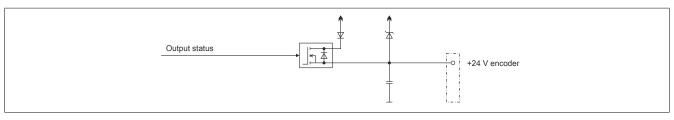



Figure 25: Circuit diagram of the encoder supply on the integrated X2 I/O slot

## 25.6 Circuit diagram of the CPU, X2X Link and I/O supply on X3

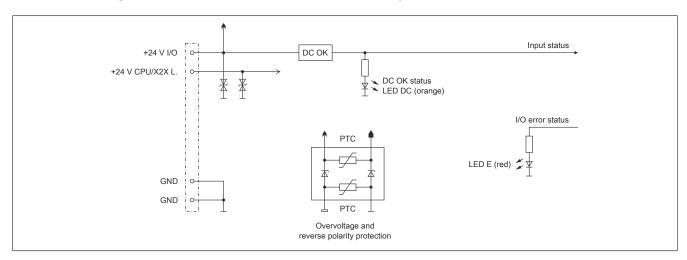



Figure 26: Circuit diagram of the CPU, X2X Link and I/O supply on the integrated X3 I/O slot

# 26 Switching frequency derating for high-speed digital outputs

The high-speed digital outputs can be switched with a frequency of max. 200 kHz. Derating may be necessary depending on the mounting orientation and operating temperature.

## Switching frequency derating for horizontal mounting orientations

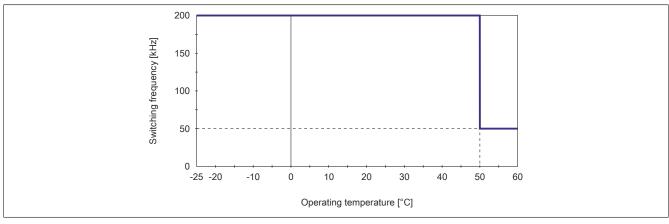



Figure 27: Switching frequency derating for high-speed digital outputs with horizontal mounting orientations

# 27 Register description

## 27.1 Register overview of the I/O data points on the integrated X1 I/O slot

| Register        | Name               | Data type | R      | ead     | W      | rite    |
|-----------------|--------------------|-----------|--------|---------|--------|---------|
|                 |                    |           | Cyclic | Acyclic | Cyclic | Acyclic |
| X1 - Configurat | ion                |           |        |         |        |         |
| 2048            | X1CfO_DI_Filter    | USINT     |        |         |        | •       |
| 2128            | X1CfO_AI_Mode      | USINT     |        |         |        | •       |
| 2112            | X1CfO_AI1_Filter   | USINT     |        |         |        | •       |
| 2116            | X1CfO_AI1_LowerLim | INT       |        |         |        | •       |
| 2118            | X1CfO_AI1_UpperLim | INT       |        |         |        | •       |
| 2120            | X1CfO_Al2_Filter   | USINT     |        |         |        | •       |
| 2124            | X1CfO_Al2_LowerLim | INT       |        |         |        | •       |
| 2126            | X1CfO_Al2_UpperLim | INT       |        |         |        | •       |
| X1 - Communic   | ation              | ·         |        |         |        |         |
| 0               | Digital inputs     | USINT     | •      |         |        |         |
|                 | DigitalInput01     | Bit 0     |        |         |        |         |
|                 | DigitalInput02     | Bit 1     |        |         |        |         |
|                 | DigitalInput03     | Bit 2     |        |         |        |         |
|                 | DigitalInput04     | Bit 3     |        |         |        |         |
| 64              | AnalogInput01      | INT       | •      |         |        |         |
|                 |                    | UINT      | •      |         |        |         |
| 66              | AnalogInput02      | INT       | •      |         |        |         |
| 80              | StatusInput01      | USINT     | •      |         |        |         |

## 27.1.1 Digital inputs

#### Unfiltered

The input status is recorded in a 100 µs cycle.

#### **Filtered**

The filtered status is transferred in a 100 µs cycle.

Filtering takes place asynchronously in an interval of 100  $\mu s$ .

## 27.1.1.1 Digital input filter

Name:

X1CfO\_DI\_Filter

This register can be used to specify the filter value for all digital inputs.

The filter value can be configured in steps of 100 µs.

| Data type            | Value | Filter                                          |
|----------------------|-------|-------------------------------------------------|
| USINT 0 No SW filter |       | No SW filter                                    |
|                      | 1     | 0.1 ms                                          |
|                      |       |                                                 |
|                      | 250   | 25 ms - Higher values are limited to this value |

## 27.1.1.2 Input state of digital inputs 1 to 4

Name:

DigitalInput01 to DigitalInput04

This register is used to indicate the input state of digital inputs 1 to 4.

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

### Bit structure:

| Bit | Name           | Value  | Information                     |
|-----|----------------|--------|---------------------------------|
| 0   | DigitalInput01 | 0 or 1 | Input status of digital input 1 |
|     |                |        |                                 |
| 3   | DigitalInput04 | 0 or 1 | Input status of digital input 4 |

#### 27.1.2 Analog inputs

Analog input values are recorded in a fixed interval. The time required for conversion/updating depends on the number of analog inputs and on the input signal:

| Input signal                                               | Time required for conversion/updating |
|------------------------------------------------------------|---------------------------------------|
| 1 current/voltage input                                    | 100 µs                                |
| 1 temperature/resistance input                             | 200 μs                                |
| 2 current/voltage inputs                                   | 200 μs                                |
| 1 current/voltage input and 1 temperature/resistance input | 400 μs                                |

#### 27.1.2.1 Analog input values

Name:

AnalogInput01

The analog input value is mapped to this register depending on the configured operating mode.

| Data type                                                             | Value                                                                      | Input signal                                              |  |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|--|
| INT                                                                   | -32,768 to 32,767                                                          | Voltage signal -10 to 10 VDC                              |  |
| 0 to 32,767 Current signal 0 to 20 mA (with 0 to 20 mA configuration) |                                                                            | Current signal 0 to 20 mA (with 0 to 20 mA configuration) |  |
|                                                                       | -8,192 to 32,767 Current signal 0 to 20 mA (with 4 to 20 mA configuration) |                                                           |  |
|                                                                       | -2,000 to 8,500                                                            | PT1000 signal -200.0 to 850.0°C                           |  |
| UINT                                                                  | 0 to 40,000                                                                | Resistance signal 0 to 4000.0 $\Omega$                    |  |

Name:

AnalogInput02

The analog input value is mapped to this register depending on the configured operating mode.

| Data type | Value             | Input signal                                              |
|-----------|-------------------|-----------------------------------------------------------|
| INT       | -32,768 to 32,767 | Voltage signal -10 to 10 VDC                              |
|           | 0 to 32,767       | Current signal 0 to 20 mA (with 0 to 20 mA configuration) |
|           | -8,192 to 32,767  | Current signal 0 to 20 mA (with 4 to 20 mA configuration) |

#### 27.1.2.2 Input status

Name:

StatusInput01

This register holds the status of the analog inputs. A change in the monitoring status generates an error message. The following states are monitored depending on the settings:

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

#### Bit structure:

| Bit   | Description | Value | Information                |
|-------|-------------|-------|----------------------------|
| 0 - 1 | Channel 1   | 00    | No error                   |
|       |             | 01    | Lower limit value exceeded |
|       |             | 10    | Upper limit value exceeded |
|       |             | 11    | Open line                  |
| 2 - 3 | Channel 2   | 00    | No error                   |
|       |             | 01    | Lower limit value exceeded |
|       |             | 10    | Upper limit value exceeded |
|       |             | 11    | Open line                  |
| 4 - 7 | Reserved    | 0     |                            |

#### Limiting the analog value

In addition to the status information, the analog value is set to the limit values listed below by default when an error occurs (see 27.1.2.5 "Limit values"). The analog value is limited to the new values if the limit values were changed.

#### 27.1.2.3 Input filter

The analog inputs are equipped with a configurable input filter.

### 27.1.2.3.1 Input ramp limitation

Input ramp limitation can only take place when a filter is used; the input ramp is limited before filtering takes place.

The amount the input value changes is checked to make sure that specified limits are not exceeded. If the values are exceeded, the adjusted input value is equal to the old value ± the limit value.

Configurable limit values:

| Value | Limit value                                 |
|-------|---------------------------------------------|
| 0     | The input value is used without limitation. |
| 1     | 0x3FFF = 16383                              |
| 2     | 0x1FFF = 8191                               |
| 3     | 0x0FFF = 4095                               |
| 4     | 0x07FF = 2047                               |
| 5     | 0x03FF = 1023                               |
| 6     | 0x01FF = 511                                |
| 7     | 0x00FF = 255                                |

Input ramp limitation is well suited for suppressing disturbances (spikes). The following examples show the function of the input ramp limitation based on an input jump and a disturbance.

### Example 1

The input value jumps from 8,000 to 17,000. The diagram shows the adjusted input value with the following settings: Input ramp limitation = 4 = 0x07FF = 2047

Filter level = 2

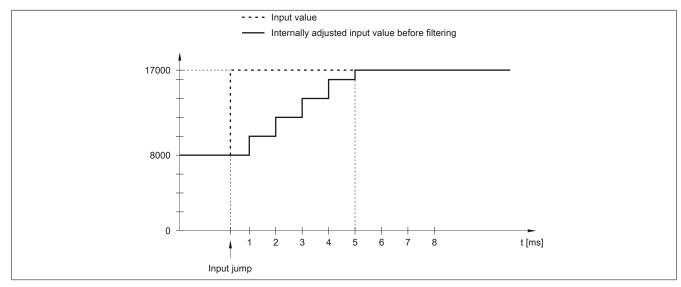



Figure 28: Adjusted input value for input jump

## Example 2

A disturbance interferes with the input value. The diagram shows the adjusted input value with the following settings: Input ramp limitation = 4 = 0x07FF = 2047

Filter level = 2

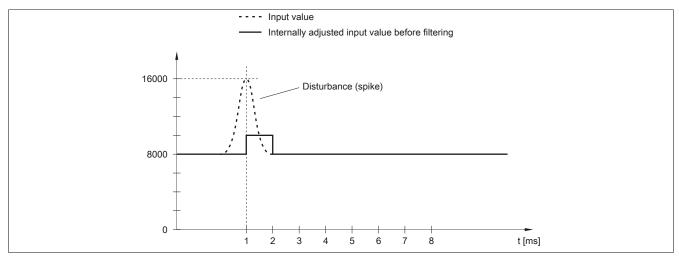



Figure 29: Adjusted input value for disturbance

#### 27.1.2.3.2 Filter level

A filter can be defined to prevent large input jumps. This filter is used to bring the input value closer to the actual analog value over a period of several bus cycles. Filtering takes place after input ramp limitation.

Formula for calculating the input value:

$$Value_{New} = Value_{Old} - \frac{Value_{Old}}{Filter level} + \frac{Input value}{Filter level}$$

Adjustable filter levels:

| Value | Filter level        |
|-------|---------------------|
| 0     | Filter switched off |
| 1     | Filter level 2      |
| 2     | Filter level 4      |
| 3     | Filter level 8      |
| 4     | Filter level 16     |
| 5     | Filter level 32     |
| 6     | Filter level 64     |
| 7     | Filter level 128    |

The following examples show how filtering works in the event of an input jump or disturbance.

#### Example 1

The input value jumps from 8,000 to 16,000. The diagram shows the calculated value with the following settings: Input ramp limitation = 0

Filter level = 2 or 4

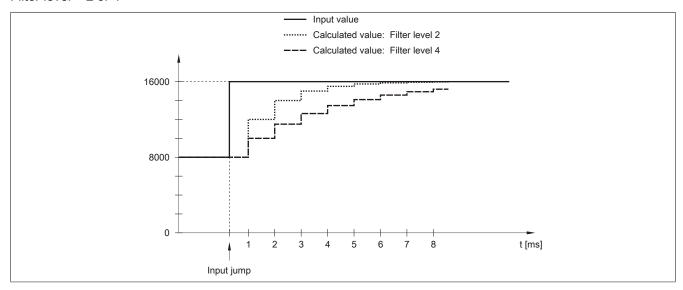



Figure 30: Calculated value during input jump

## Example 2

A disturbance interferes with the input value. The diagram shows the calculated value with the following settings: Input ramp limitation = 0

Filter level = 2 or 4



Figure 31: Calculated value during disturbance

## 27.1.2.3.3 Configuring the input filter

Name:

X1CfO\_AI1\_Filter

X1CfO\_Al2\_Filter

This register is used to define the filter level and input ramp limitation of the input filter.

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

#### Bit structure:

| Bit   | Description                       | Value | Information                                |
|-------|-----------------------------------|-------|--------------------------------------------|
| 0 - 2 | Defines the filter level          | 000   | Filter switched off                        |
|       |                                   | 001   | Filter level 2                             |
|       |                                   | 010   | Filter level 4                             |
|       |                                   | 011   | Filter level 8                             |
|       |                                   | 100   | Filter level 16                            |
|       |                                   | 101   | Filter level 32                            |
|       |                                   | 110   | Filter level 64                            |
|       |                                   | 111   | Filter level 128                           |
| 3     | Reserved                          | 0     |                                            |
| 4 - 6 | Defines the input ramp limitation | 000   | The input value is used without limitation |
|       |                                   | 001   | Limit value = 0x3FFF (16383)               |
|       |                                   | 010   | Limit value = 0x1FFF (8191)                |
|       |                                   | 011   | Limit value = 0x0FFF (4095)                |
|       |                                   | 100   | Limit value = 0x07FF (2047)                |
|       |                                   | 101   | Limit value = 0x03FF (1023)                |
|       |                                   | 110   | Limit value = 0x01FF (511)                 |
|       |                                   | 111   | Limit value = 0x00FF (255)                 |
| 7     | Reserved                          | 0     |                                            |

#### 27.1.2.4 Channel type

Name:

X1CfO\_AI\_Mode

This register can be used to define the type and range of signal measurement.

Each channel is capable of handling current, voltage or resistance signals. This differentiation is made using multiple connection terminal points and an integrated switch. The switch is automatically activated depending on the specified configuration. The following input signals can be set:

| Input signal                   | On channel |  |  |
|--------------------------------|------------|--|--|
| ±10 V voltage signal (default) | 1 and 2    |  |  |
| 0 to 20 mA current signal      | 1 and 2    |  |  |
| 4 to 20 mA current signal      | 1 and 2    |  |  |
| PT1000 measurement             | 1          |  |  |
| Resistance measurement         | 1          |  |  |

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

### Bit structure:

| Bit   | Description              | Value | Information               |
|-------|--------------------------|-------|---------------------------|
| 0 - 2 | Analog input - Channel 1 | 000   | Channel disabled          |
|       |                          | 001   | ±10 V voltage signal      |
|       |                          | 010   | 0 to 20 mA current signal |
|       |                          | 011   | 4 to 20 mA current signal |
|       |                          | 100   | PT1000 measurement        |
|       |                          | 101   | Resistance measurement    |
| 3     | Reserved                 | 0     |                           |
| 4 - 5 | Analog input - Channel 2 | 00    | Channel disabled          |
|       |                          | 01    | ±10 V voltage signal      |
|       |                          | 10    | 0 to 20 mA current signal |
|       |                          | 11    | 4 to 20 mA current signal |
| 6 - 7 | Reserved                 | 0     |                           |

#### 27.1.2.5 Limit values

The input signal is monitored at the upper and lower limit values. By default the following limits are set for each mode:

| Limit value (default)     | Voltage signal ±10 V |                 | Current signal 0 to 20 mA |                | Current signal 4 to 20 mA |                |
|---------------------------|----------------------|-----------------|---------------------------|----------------|---------------------------|----------------|
| Upper maximum limit value | 10 V                 | 32767 (0x7FFF)  | 20 mA                     | 32767 (0x7FFF) | 20 mA                     | 32767 (0x7FFF) |
| Lower minimum limit value | -10 V                | -32767 (0x8001) | 0 mA                      | 01)            | 4 mA                      | 02)            |

Table 21: Limit values for voltage and current signals

- 1) The analog value is limited down to 0.
- 2) Due to the default limit value, the analog value is limited to a minimum of 0 at currents <4 mA.

| Limit value (default)     | Temperature measurement |                | Resistance me | easurement     |
|---------------------------|-------------------------|----------------|---------------|----------------|
| Upper maximum limit value | 8000°C                  | 8000 (0x1F40)  | 4000.0 Ω      | 32767 (0x7FFF) |
| Lower minimum limit value | -2000°C                 | -2000 (0xF830) | 0 Ω           | 0              |

Table 22: Limit values for temperature and resistance measurement

Other limit values can be defined if necessary. These are activated automatically by writing the limit value register (see 27.1.2.5.1 "Lower limit value" and 27.1.2.5.2 "Upper limit value"). From this point on, the analog values will be monitored and limited according to the new limits. The results of monitoring are displayed in the status register (see 27.1.2.2 "Input status").

# Application example of setting limit values

A negative limit value must be configured in order to measure values <4 mA with a current signal of 4 to 20 mA: 0 mA corresponds to a value of -8192 (0xE000).

#### 27.1.2.5.1 Lower limit value

Name:

X1CfO\_AI1\_LowerLim

X1CfO Al2 LowerLim

These registers can be used to configure the lower limit for analog values. If the analog value goes below the limit value, it is frozen at this value and the corresponding error status bit is set (see 27.1.2.2 "Input status").

| Data type | Value             |
|-----------|-------------------|
| INT       | -32,768 to 32,767 |
| UINT      | 0 to 65,535       |

## Information:

When configured as 4 to 20 mA, this value can be set to -8192 (corresponds to 0 mA) in order to display values <4 mA.

## 27.1.2.5.2 Upper limit value

Name:

X1CfO\_AI1\_UpperLim

X1CfO\_Al2\_UpperLim

These registers can be used to configure the upper limit for analog values. If the analog value goes above the limit value, it is frozen at this value and the corresponding error status bit is set (see 27.1.2.2 "Input status").

| Data type | Value       |
|-----------|-------------|
| INT       | 0 to 32,767 |
| UINT      | 0 to 65,535 |

# 27.2 Register overview of the I/O data points on the integrated X2 I/O slot

| Register       | Name                         | Data type     | Read   |         | Write  |         |
|----------------|------------------------------|---------------|--------|---------|--------|---------|
|                |                              |               | Cyclic | Acyclic | Cyclic | Acyclic |
| ! - Configurat |                              |               |        |         |        |         |
| 7168           | X2CfO_EdgeDetectUnit01Mode   | USINT         |        |         |        | •       |
| 7169           | X2CfO_EdgeDetectUnit01Master | USINT         |        |         |        | •       |
| 7170           | X2CfO_EdgeDetectUnit01Slave  | USINT         |        |         |        | •       |
| 7184           | X2CfO_EdgeDetectUnit02Mode   | USINT         |        |         |        | •       |
| 7185           | X2CfO_EdgeDetectUnit02Master | USINT         |        |         |        | •       |
| 7186           | X2CfO_EdgeDetectUnit02Slave  | USINT         |        |         |        | •       |
| 6144           | X2CfO_DI_Filter              | USINT         |        |         |        | •       |
| 6528           | X2CfO_CounterMode            | USINT         |        |         |        | •       |
| 6400           | X2CfO_Latch01Mode            | USINT         |        |         |        | •       |
| 6401           | X2CfO_Latch01Comparator      | USINT         |        |         |        | •       |
| 6416           | X2CfO_Latch02Mode            | USINT         |        |         |        | •       |
| 6417           | X2CfO_Latch02Comparator      | USINT         |        |         |        | •       |
| - Communic     | ation                        | ·             |        |         |        |         |
| 4096           | Digital inputs               | USINT         | •      |         |        |         |
|                | DigitalInput01               | Bit 0         |        |         |        | İ       |
|                | DigitalInput02               | Bit 1         |        |         |        |         |
|                | DigitalInput03               | Bit 2         |        |         |        |         |
|                | DigitalInput04               | Bit 3         |        |         |        |         |
|                | DigitalInput05               | Bit 4         |        |         |        |         |
|                | DigitalInput06               | Bit 5         |        |         |        |         |
|                | DigitalInput07               | Bit 6         |        |         |        |         |
|                | DigitalInput08               | Bit 7         |        |         |        |         |
| 4097           | Digital inputs               | USINT         |        |         |        |         |
| 4097           | DigitalInput09               | Bit 0         | •      |         |        |         |
|                | DigitalInput10               | Bit 1         |        |         |        |         |
|                | DigitalInput11               | Bit 2         |        |         |        |         |
|                | Digitalinput12               | Bit 3         |        |         |        |         |
|                | Digitalinput13               | Bit 4         |        |         |        |         |
|                |                              |               |        |         |        |         |
| 5120           | DigitalInput14               | Bit 5<br>DINT |        |         |        |         |
|                | EdgeDetect01Mastertime       |               | •      |         |        |         |
| 5124           | EdgeDetect01Difference       | DINT          | •      |         |        |         |
| 5128           | EdgeDetect01Mastercount      | INT           | •      |         |        |         |
| 5136           | EdgeDetect02Mastertime       | DINT          | •      |         |        |         |
| 5140           | EdgeDetect02Difference       | DINT          | •      |         |        |         |
| 5144           | EdgeDetect02Mastercount      | INT           | •      |         |        |         |
| 4384           | Counter 1                    | USINT         |        |         | •      |         |
|                | Counter01Reset               | Bit 0         |        |         |        |         |
|                | Latch01Enable                | Bit 1         |        |         |        |         |
| 4352           | Counter01Value               | DINT          | •      |         |        |         |
| 4356           | Counter01Latch               | DINT          | •      |         |        |         |
| 4360           | Counter01TimeChanged         | DINT          | •      |         |        |         |
| 4364           | Counter01TimeValid           | DINT          | •      |         |        |         |
| 4368           | Latch01Count                 | SINT          | •      |         |        |         |
| 4448           | Counter 2                    | USINT         |        |         | •      |         |
|                | Counter02Reset               | Bit 0         |        |         |        |         |
|                | Latch02Enable                | Bit 1         |        |         |        |         |
| 4416           | Counter02Value               | DINT          | •      |         |        |         |
| 4420           | Counter02Latch               | DINT          | •      |         |        |         |
| 4424           | Counter02TimeChanged         | DINT          | •      |         |        |         |
| 4428           | Counter02TimeValid           | DINT          | •      |         |        |         |
| 4432           | Latch02Count                 | SINT          | •      |         |        |         |

# 27.2.1 Digital inputs

## **Unfiltered**

The input status is recorded in a 100 µs cycle.

## **Filtered**

The filtered status is transferred in a 100 µs cycle.

Filtering takes place asynchronously in an interval of 100  $\mu s$ .

# 27.2.1.1 Digital input filter

Name:

X2CfO\_DI\_Filter

This register can be used to specify the filter value for all digital inputs.

The filter value can be configured in steps of 100  $\mu$ s.

| Data type | Value | Filter                                          |
|-----------|-------|-------------------------------------------------|
| USINT     | 0     | No SW filter                                    |
|           | 1     | 0.1 ms                                          |
|           |       |                                                 |
|           | 250   | 25 ms - Higher values are limited to this value |

# 27.2.1.2 Input state of digital inputs 1 to 14

Name:

DigitalInput01 to DigitalInput14

These registers are used to indicate the input state of digital inputs 1 to 14.

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

# Bit structure of register 4096:

| Bit | Name           | Value  | Information                     |
|-----|----------------|--------|---------------------------------|
| 0   | DigitalInput01 | 0 or 1 | Input status of digital input 1 |
|     |                |        |                                 |
| 7   | DigitalInput08 | 0 or 1 | Input status of digital input 8 |

# Bit structure of register 4097:

| Bit | Name           | Value  | Information                      |
|-----|----------------|--------|----------------------------------|
| 0   | DigitalInput09 | 0 or 1 | Input status of digital input 9  |
|     |                |        |                                  |
| 5   | DigitalInput14 | 0 or 1 | Input status of digital input 14 |

#### 27.2.2 Edge detection

Digital inputs 11 to 14 can be used for fast edge detection. This runs parallel to all other functions such as counters, etc. This function does not use the digital input filter.

The edge detection function measures edges with µs precision. 2 units are available. A master and a slave edge can be configured for each unit. At each master edge, the timestamp of the master edge and the differential time to the previous slave edge (if present) are logged. A "Master count" can always be utilized to determine how many edges have been detected since the last task class cycle. The timestamp is based on the system time of the CPU.

The combination of rising/falling edges of each channel can be used to configure the following functions for each unit:

| Function        | Description                                                             |  |
|-----------------|-------------------------------------------------------------------------|--|
| Edge time       | easure an edge time                                                     |  |
| Period duration | easure the master and differential time                                 |  |
| Gate time       | leasure the master and differential time                                |  |
| Time offset     | Measure the master and differential time of edges on different channels |  |

## 27.2.2.1 Edge detection unit - Mode settings

The edge detection unit needs to be configured according to the desired function.

| Function                                       | Description                                                                                                  |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| Basic timestamp, master edge mode              | The current system time is saved as the master time at the time of the edge.                                 |
| Timestamp and/or differential time, master and | The slave edge starts the measurement and the system time is saved temporarily. When the master edge occurs, |
| slave edge mode                                | the current system time is saved as the master time and the difference between the master and slave edges    |
|                                                | is calculated.                                                                                               |

#### Name:

X2CfO EdgeDetectUnit01Mode

X2CfO EdgeDetectUnit02Mode

These registers are used to configure the mode of the basic function for either just the master edge or both master and slave edges.

| Data type | Value | Information                                                                  |  |
|-----------|-------|------------------------------------------------------------------------------|--|
| USINT     | 0x00  | Edge detection disabled on Unit0x: Time measurement not possible             |  |
|           | 0x80  | Edge detection enabled on Unit0x:                                            |  |
|           |       | Reaction only possible for master edge, no differential measurement possible |  |
|           | 0xC0  | Edge detection enabled on Unit0x:                                            |  |
|           |       | Reaction possible for configured master and slave edges                      |  |

#### 27.2.2.2 Edge detection unit - Selection of master edge

#### Name:

X2CfO EdgeDetectUnit01Master

X2CfO\_EdgeDetectUnit02Master

These registers are used to select the source of the master edge for the respective unit. Either the rising or falling edge of one of the 4 fast digital input channels can be selected. Only one edge can be selected for each unit.

| Data type | Value | Information                            |
|-----------|-------|----------------------------------------|
| USINT     | 0     | Digital input channel 11: Rising edge  |
|           | 2     | Digital input channel 12: Rising edge  |
|           | 4     | Digital input channel 13: Rising edge  |
|           | 6     | Digital input channel 14: Rising edge  |
|           | 1     | Digital input channel 11: Falling edge |
|           | 3     | Digital input channel 12: Falling edge |
|           | 5     | Digital input channel 13: Falling edge |
|           | 7     | Digital input channel 14: Falling edge |

#### 27.2.2.3 Edge detection unit - Selection of slave edge

Name:

X2CfO EdgeDetectUnit01Slave

X2CfO EdgeDetectUnit02Slave

These registers are used to select the source of the slave edge for the respective unit. Either the rising or falling edge of one of the 4 fast digital input channels can be selected. Only one edge can be selected for each unit.

| Data type | Value | Information                            |
|-----------|-------|----------------------------------------|
| USINT     | 0     | Digital input channel 11: Rising edge  |
|           | 2     | Digital input channel 12: Rising edge  |
|           | 4     | Digital input channel 13: Rising edge  |
|           | 6     | Digital input channel 14: Rising edge  |
|           | 1     | Digital input channel 11: Falling edge |
|           | 3     | Digital input channel 12: Falling edge |
|           | 5     | Digital input channel 13: Falling edge |
|           | 7     | Digital input channel 14: Falling edge |

## 27.2.2.4 Edge detection unit - Master edge counter

Name:

EdgeDetect01Mastercount

EdgeDetect02Mastercount

These registers hold the counter values of the detected master edges. The counter value is used to detect new measurements.

| Data type | Value             | Information                                      |
|-----------|-------------------|--------------------------------------------------|
| INT       | -32,768 to 32,767 | Running counter: Number of detected master edges |

## 27.2.2.5 Edge detection unit - Master edge timestamp

Name:

EdgeDetect01Mastertime

EdgeDetect02Mastertime

The exact CPU system time of the respective unit is saved to these registers when a master edge occurs. If multiple master edges occur within a single cycle (task class), then the time of the last edge is shown.

| Data type | Value                           | Information                         |
|-----------|---------------------------------|-------------------------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | CPU system time of master edge [µs] |

# 27.2.2.6 Edge detection unit - Time difference

Name:

EdgeDetect01Difference

EdgeDetect02Difference

The difference between the master edge and the slave edge of the respective unit is saved to these registers. If multiple measurement periods are completed within a single cycle (task class), then the time difference from the last period is shown.

| Data type | Value                           | Information                                             |
|-----------|---------------------------------|---------------------------------------------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | Time difference between master edge and slave edge [µs] |

#### 27.2.3 Counter functions

Fast digital inputs 11 to 14 can be used for counter functions. This function does not use the digital input filter. The following functions are available. Only one of these basic configurations can be enabled at a time:

- · 2x event counter with latch function
- · 2x AB incremental counter without latch function
- · DF counter function
- · ABR counter function

# 27.2.3.1 Configuring the counter function

The following counter functions can be configured:

| Counter function                              | Description                                                                                                                                                                                            |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2x event counter with latch function          | Input 11 for event counter 1 and input 13 for event counter 2 can be used simultaneously as event counters. Both rising and falling edges are counted. The latch function of all 4 inputs can be used. |
| 2x AB incremental counter without latch func- | Inputs 11 and 12 as AB counter 1 and inputs 13 and 14 as AB counter 2. Since no more fast inputs are available,                                                                                        |
| tion                                          | the latch function is not available.                                                                                                                                                                   |
| DF counter:                                   | The D, F and R signals are linked to inputs 11, 12 and 13. Signal D defines the positive (Level = 0) or negative                                                                                       |
| Direction/Frequency with latch function       | (Level = 1) counting direction. The latch function of all 4 inputs can be used.                                                                                                                        |
| ABR counter with latch function               | The A, B and R signals are linked to inputs 11, 12 and 13. The latch function of all 4 inputs can be used.                                                                                             |

## Name:

X2CfO\_CounterMode

This register configures the counter function:

| Data type | Value | Information                                      |
|-----------|-------|--------------------------------------------------|
| USINT     | 0     | 2x event counter with latch function             |
|           | 1     | 2x AB incremental counter without latch function |
|           | 2     | DF counter with latch function                   |
|           | 3     | ABR counter with latch function                  |

## 27.2.3.2 Configuring the mode of the latch function

Name:

X2CfO\_Latch01Mode

X2CfO\_Latch02Mode

This register sets the mode of the latch function. The following latch functions can be configured:

| Latch function         | Description                                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------------------------|
| Single shot latch mode | The latch function must be enabled/set. After a successful latch procedure the function must first be reset. Then |
|                        | it can be enabled again.                                                                                          |
| Continuous latch mode  | The latch function only has to be enabled/set as long as latching is desired.                                     |

A changed counter value on "LatchCount" indicates that the latch procedure has been performed (see 27.2.3.7 "Counter value of latch events"). The counter value is stored in the latch register (see 27.2.3.6 "Latched counter value").

| Data type | Value | Information            |
|-----------|-------|------------------------|
| USINT     | 0     | Single shot latch mode |
|           | 1     | Continuous latch mode  |

# 27.2.3.3 Configuring the latch signals

Name:

X2CfO\_Latch01Comparator X2CfO\_Latch02Comparator

This register defines the inputs and their level for triggering the latch procedure.

- This defines which inputs are linked to generate the latch event. All 4 digital input signals can be used for an "AND" connection.
- The "active voltage level" needed for the latch procedure can be defined to adjust for the physical signals. It is not possible to configure a high and low level at the same time.

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

#### Bit structure:

| Bit | Value | Information                                |
|-----|-------|--------------------------------------------|
| 0   | 0     | Input 11 high level disabled               |
|     | 1     | Input 11 high level enabled for comparator |
| 1   | 0     | Input 12 high level disabled               |
|     | 1     | Input 12 high level enabled for comparator |
| 2   | 0     | Input 13 high level disabled               |
|     | 1     | Input 13 high level enabled for comparator |
| 3   | 0     | Input 14 high level disabled               |
|     | 1     | Input 14 high level enabled for comparator |
| 4   | 0     | Input 11 low level disabled                |
|     | 1     | Input 11 low level enabled for comparator  |
| 5   | 0     | Input 12 low level disabled                |
|     | 1     | Input 12 low level enabled for comparator  |
| 6   | 0     | Input 13 low level disabled                |
|     | 1     | Input 13 low level enabled for comparator  |
| 7   | 0     | Input 14 low level disabled                |
|     | 1     | Input 14 low level enabled for comparator  |

## 27.2.3.4 Clear counter value and enable/disable latch function

Name:

Counter01Reset

Counter02Reset

Latch01Enable

Latch02Enable

The respective bits in these registers clear the counter value or start the latch procedure.

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

## Bit structure:

| Bit   | Description    | Value | Information              |
|-------|----------------|-------|--------------------------|
| 0     | Counter0xReset | 0     | Do not reset the counter |
|       |                | 1     | Reset the counter        |
| 1     | Latch0xEnable  | 0     | Do not latch the counter |
|       |                | 1     | Latch the counter        |
| 2 - 7 | Reserved       | 0     |                          |

#### 27.2.3.5 Counter value

Name:

Counter01Value

Counter02Value

The current counter values are saved in these registers.

| Data type | Value                           | Information           |
|-----------|---------------------------------|-----------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | Current counter value |

#### 27.2.3.6 Latched counter value

Name:

Counter01Latch Counter02Latch

As soon as the latch conditions have been met, the value of the respective counter is copied to these registers.

| Data type | Value                           | Information           |
|-----------|---------------------------------|-----------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | Latched counter value |

#### 27.2.3.7 Counter value of latch events

Name:

Latch01Count Latch02Count

These registers hold the counter values of the latch events. This allows detection of whether a new latched counter value has been saved.

| Data type | Value       | Information                                      |
|-----------|-------------|--------------------------------------------------|
| DINT      | -128 to 127 | Running counter: Number of detected latch events |

# 27.2.3.8 Timestamp of last counter change

Name:

Counter01TimeChanged

Counter02TimeChanged

The CPU system time at the time of the last change to the counter value is saved in these registers.

| Data type | Value                           | Information                                                             |
|-----------|---------------------------------|-------------------------------------------------------------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | The CPU system time at the time of the last change to the counter value |

## 27.2.3.9 Timestamp of last valid counter value

Name:

Counter01TimeValid

Counter02TimeValid

The CPU system time at the time of the last valid counter value is saved in these registers.

| Data type | Value                           | Information                              |
|-----------|---------------------------------|------------------------------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | CPU system time of current counter value |

# 27.3 Register overview of the I/O data points on the integrated X3 I/O slot

| Register       | Name                  | Data type |        | ad      |        | rite    |
|----------------|-----------------------|-----------|--------|---------|--------|---------|
|                |                       |           | Cyclic | Acyclic | Cyclic | Acyclic |
| 3 - Configurat |                       |           |        | T.      |        | _       |
| 10240          | X3CfO_DI_Filter       | USINT     |        |         |        | •       |
| 10752          | X3CfO_Mov01Mode       | USINT     |        |         |        | •       |
| 10756          | X3CfO_Mov01SpeedLimit | UDINT     |        |         |        | •       |
| 10768          | X3CfO_Mov02Mode       | USINT     |        |         |        | •       |
| 10772          | X3CfO_Mov02SpeedLimit | UDINT     |        |         |        | •       |
| 12032          | X3CfO_PhylOConfigCh01 | USINT     |        |         |        | •       |
| 12033          | X3CfO_PhylOConfigCh02 | USINT     |        |         |        | •       |
| 12034          | X3CfO_PhylOConfigCh03 | USINT     |        |         |        | •       |
| 12035          | X3CfO_PhylOConfigCh04 | USINT     |        |         |        | •       |
| 12036          | X3CfO_PhylOConfigCh05 | USINT     |        |         |        | •       |
| 12037          | X3CfO_PhylOConfigCh06 | USINT     |        |         |        | •       |
| 12038          | X3CfO_PhylOConfigCh07 | USINT     |        |         |        | •       |
| 12039          | X3CfO_PhylOConfigCh08 | USINT     |        |         |        | •       |
| 12040          | X3CfO_PhylOConfigCh09 | USINT     |        |         |        | •       |
| 12041          | X3CfO_PhylOConfigCh10 | USINT     |        |         |        | •       |
| 12042          | X3CfO_PhylOConfigCh11 | USINT     |        |         |        | •       |
| 12043          | X3CfO_PhylOConfigCh12 | USINT     |        |         |        | •       |
| - Communio     |                       | LIGHT     |        | ı       |        | 1       |
| 8192           | Digital inputs        | USINT     | •      |         |        |         |
|                | DigitalInput05        | Bit 0     |        |         |        |         |
|                | DigitalInput06        | Bit 1     |        |         |        |         |
|                | DigitalInput07        | Bit 2     |        |         |        |         |
|                | DigitalInput08        | Bit 3     |        |         |        |         |
| 8208           | Digital outputs       | USINT     |        |         | •      |         |
|                | DigitalOutput01       | Bit 0     |        |         |        |         |
|                | DigitalOutput02       | Bit 1     |        |         |        |         |
|                | DigitalOutput03       | Bit 2     |        |         |        |         |
|                | DigitalOutput04       | Bit 3     |        |         |        |         |
|                | DigitalOutput05       | Bit 4     |        |         |        |         |
|                | DigitalOutput06       | Bit 5     |        |         |        |         |
|                | DigitalOutput07       | Bit 6     |        |         |        |         |
|                | DigitalOutput08       | Bit 7     |        |         |        |         |
| 8209           | Digital outputs       | USINT     |        |         | •      |         |
|                | DigitalOutput09       | Bit 0     |        |         |        |         |
|                | DigitalOutput10       | Bit 1     |        |         |        |         |
|                | DigitalOutput11       | Bit 2     |        |         |        |         |
|                | DigitalOutput12       | Bit 3     |        |         |        |         |
| 8193           | Status feedback       | USINT     | •      |         |        |         |
|                | StatusDigitalOutput01 | Bit 0     |        |         |        |         |
|                | StatusDigitalOutput02 | Bit 1     |        |         |        |         |
|                | StatusDigitalOutput03 | Bit 2     |        |         |        |         |
|                | StatusDigitalOutput04 | Bit 3     |        |         |        |         |
|                | StatusDigitalOutput05 | Bit 4     |        |         |        |         |
|                | StatusDigitalOutput06 | Bit 5     |        |         |        |         |
|                | StatusDigitalOutput07 | Bit 6     |        |         |        |         |
|                | StatusDigitalOutput08 | Bit 7     |        |         |        |         |
| 8194           | Status feedback       | USINT     | •      |         |        |         |
|                | StatusDigitalOutput09 | Bit 0     |        |         |        | 1       |
|                | StatusDigitalOutput10 | Bit 1     |        |         |        |         |
|                | StatusDigitalOutput11 | Bit 2     |        |         |        |         |
|                | StatusDigitalOutput12 | Bit 3     |        |         |        |         |
| 4864           | PWMPeriod09           | UINT      |        |         | •      | 1       |
| 4866           | PWMOutput09           | INT       |        |         | •      |         |
| 4880           | PWMPeriod10           | UINT      |        |         | •      | 1       |
| 4882           | PWMOutput10           | INT       |        |         | •      |         |
| 4896           | PWMPeriod11           | UINT      |        |         | •      |         |
| 4898           | PWMOutput11           | INT       |        |         | •      |         |
| 4912           | PWMPeriod12           | UINT      |        |         | •      |         |
| 4914           | PWMOutput12           | INT       |        |         | •      |         |
| 8704           | Movement 1            | USINT     |        |         | •      |         |
|                | Mov01Enable           | Bit 1     |        |         |        |         |
| 8706           | Mov01Speed            | INT       |        |         | •      |         |
| 8708           | Mov01Position         | DINT      | •      |         |        |         |
| 8720           | Movement 2            | USINT     |        |         | •      |         |
|                | Mov02Enable           | Bit 2     |        |         |        |         |
| 8722           | Mov02Speed            | INT       |        |         | •      |         |
| 8724           | Mov02Position         | DINT      | •      |         |        |         |
| 8196           | StatusInput01         | BOOL      | •      |         |        | 1       |

## 27.3.1 Physical configuration of I/O channels

These registers are used to define the functionality of the channels. Depending on the desired configuration, the following assignments can be made with respect to the existing software and hardware:

- · A physical configuration as input or output for mixed channels
- An explicit assignment as direct I/O channel: i.e. digital input or digital output
- · An explicit assignment as PWM output
- · An explicit assignment as D or F movement output

# 27.3.1.1 Physical configuration

Name:

X3CfO\_PhylOConfigCh01 to X3CfO\_PhylOConfigCh12

These registers are used to configure the functionality of the channels.

| Data type | Value              |
|-----------|--------------------|
| USINT     | See bit structure. |

Bit structure:

Name:

X3CfO\_PhylOConfigCh01 to X3CfO\_PhylOConfigCh04

Channels 1 to 4 are digital outputs and can only be used as direct I/O channel.

| Bit   | Description | Value | Information                    |
|-------|-------------|-------|--------------------------------|
| 0 - 7 |             | 0     | Direct I/O operation of output |

Name:

X3CfO\_PhylOConfigCh05 to X3CfO\_PhylOConfigCh08

Channels 5 to 8 are digital mixed channels and can be configured as either input or output.

| Bit   | Description | Value | Information                    |
|-------|-------------|-------|--------------------------------|
| 0 - 1 |             | 00    | Configured as digital output   |
|       |             | 01    | Reserved                       |
|       |             | 10    | Reserved                       |
|       |             | 11    | Configured as digital input    |
| 2 - 7 |             | 0     | Direct I/O operation of output |

Name:

X3CfO\_PhylOConfigCh09 to X3CfO\_PhylOConfigCh12

Channels 9 to 12 are fast digital outputs and can be configured as direct I/O, PWM or movement channels.

| Bit   | Description | Value | Information                     |
|-------|-------------|-------|---------------------------------|
| 0 - 3 | Reserved    | 0     |                                 |
| 4 - 5 |             | 00    | Direct I/O operation of output  |
|       |             | 01    | Output operated as PWM          |
|       |             | 10    | Reserved                        |
|       |             | 11    | Output operated as D/F movement |
| 6 - 7 | Reserved    | 0     |                                 |

# 27.3.2 Monitoring of the I/O supply voltage

Name:

StatusInput01

The status of the I/O supply voltage is shown in this register.

| Data type | Value | Information                                                        |  |
|-----------|-------|--------------------------------------------------------------------|--|
| USINT     | 0     | I/O supply voltage within permitted range                          |  |
|           | 1     | I/O supply voltage not connected or outside of the permitted range |  |

# 27.3.3 Digital inputs

## **Unfiltered**

The input status is recorded in a 100 µs cycle.

## **Filtered**

The filtered status is transferred in a 100 µs cycle.

Filtering takes place asynchronously in an interval of 100 μs.

# 27.3.3.1 Digital input filter

Name:

X3CfO\_DI\_Filter

This register can be used to specify the filter value for all digital inputs.

The filter value can be configured in steps of 100 µs.

| Data type | Value          | Filter                                          |
|-----------|----------------|-------------------------------------------------|
| USINT     | 0 No SW filter |                                                 |
|           | 1              | 0.1 ms                                          |
|           |                |                                                 |
|           | 250            | 25 ms - Higher values are limited to this value |

# 27.3.3.2 Input state of digital inputs 5 to 8

Name:

DigitalInput05 to DigitalInput08

This register is used to indicate the input state of digital inputs 5 to 8.

| Data type | Value              |  |
|-----------|--------------------|--|
| USINT     | See bit structure. |  |

## Bit structure:

| Bit | Name           | Value  | Information                     |
|-----|----------------|--------|---------------------------------|
| 0   | DigitalInput05 | 0 or 1 | Input status of digital input 5 |
|     |                |        |                                 |
| 3   | DigitalInput08 | 0 or 1 | Input status of digital input 8 |

# 27.3.4 Digital outputs

The output status is processed in a 100  $\mu s$  cycle.

# 27.3.4.1 Switching state of digital outputs 1 to 12

Name:

DigitalOutput01 to DigitalOutput12

These registers are used to store the switching state of digital outputs 1 to 12.

| Data type | Value              |  |
|-----------|--------------------|--|
| USINT     | See bit structure. |  |

# Bit structure:

# Register 8208:

| Bit | Description     | Value | Information            |
|-----|-----------------|-------|------------------------|
| 0   | DigitalOutput01 | 0     | Digital output 1 reset |
|     |                 | 1     | Digital output 1 set   |
|     |                 |       |                        |
| 7   | DigitalOutput08 | 0     | Digital output 8 reset |
|     |                 | 1     | Digital output 8 set   |

# Register 8209:

| Bit | Description     | Value | Information             |
|-----|-----------------|-------|-------------------------|
| 0   | DigitalOutput09 | 0     | Digital output 9 reset  |
|     |                 | 1     | Digital output 9 set    |
|     |                 |       |                         |
| 3   | DigitalOutput12 | 0     | Digital output 12 reset |
|     |                 | 1     | Digital output 12 set   |

# 27.3.5 Monitoring status of the digital outputs

The error states of the outputs must be programmed in the application. The status information that is read is the actual voltage state on the channel (set or reset). The error state is therefore determined by a difference between the data points "DigitalOutputxx" and the corresponding "StatusDigitalOutputxx".

At least 3 system ticks are needed internally to read the output status. This is the reason for the delay after which the earliest possible comparison can be made after a change in the status of the output.

The digital input filter is not applied to this status information.

## 27.3.5.1 Status of digital outputs 1 to 12

#### Name:

StatusDigitalOutput01 to StatusDigitalOutput12

These registers are used to indicate the status of digital outputs 1 to 12.

| Data type | Value              |  |
|-----------|--------------------|--|
| USINT     | See bit structure. |  |

## Bit structure:

#### Register 8193:

| Bit | Description           | Value | Information                                       |
|-----|-----------------------|-------|---------------------------------------------------|
| 0   | StatusDigitalOutput01 | 0     | Channel 1: Digital output reset or short circuit  |
|     |                       | 1     | Channel 1: Digital output set or voltage feedback |
|     |                       |       |                                                   |
| 7   | StatusDigitalOutput08 | 0     | Channel 8: Digital output reset or short circuit  |
|     |                       | 1     | Channel 8: Digital output set or voltage feedback |

## Register 8194:

| Bit | Description           | Value | Information                                        |
|-----|-----------------------|-------|----------------------------------------------------|
| 0   | StatusDigitalOutput09 | 0     | Channel 9: Digital output reset or short circuit   |
|     |                       | 1     | Channel 9: Digital output set or voltage feedback  |
|     |                       |       |                                                    |
| 3   | StatusDigitalOutput12 | 0     | Channel 12: Digital output reset or short circuit  |
|     |                       | 1     | Channel 12: Digital output set or voltage feedback |

## 27.3.6 Pulse width modulation (PWM) function

Digital inputs 9 to 12 can be configured as PWM outputs. Two data points are available per channel for controlling the PWM signal.

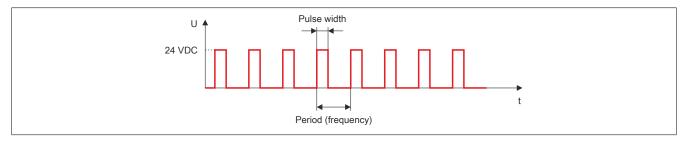



Figure 32: The PWM signal is controlled by setting the pulse width and the duration of the period

## 27.3.6.1 Period duration of the PWM outputs

Name:

PWMPeriod09 to PWMPeriod12

These registers are used to define the duration of the period, i.e. the time base for the respective PWM output. This time represents the 100% value, which can be resolved to 0.1% through the duty cycle.

| Data type        | Value | Information                                                                                |  |  |
|------------------|-------|--------------------------------------------------------------------------------------------|--|--|
| UINT 5 to 65,535 |       | Duration of period, between 5 and 65535 µs: Corresponds to a frequency between 200 kHz and |  |  |
|                  |       | ~15 Hz                                                                                     |  |  |

#### 27.3.6.2 Duty cycle of the PWM outputs

Name:

PWMOutput09 to PWMOutput12

These registers output the duty cycle of the respective PWM output in a resolution of 0.1% of the period.

| Data type | Value      | Information                             |
|-----------|------------|-----------------------------------------|
| INT       | 0 to 1,000 | Duty cycle of the output in 0 to 100.0% |

Example: Period duration T [µs] with a duty cycle of 25% equals a duty time of t<sub>1</sub> [µs].

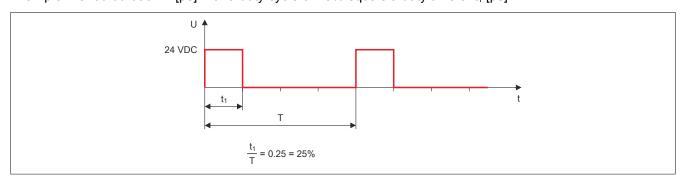



Figure 33: Duty time as a function of the period and the duty cycle

# 27.3.7 DF movement generator function

Digital output channels 9 to 12 can be configured as 2 independently functioning movement generators (Direction/Frequency) for stepper motor control. The movement generators are assigned to the following channels:

| Movement generator | Channel | Function     |
|--------------------|---------|--------------|
| 1                  | DO 9    | D: Direction |
|                    | DO 10   | Q: Frequency |
| 2                  | DO 11   | D: Direction |
|                    | DO 12   | Q: Frequency |

The frequency is output via the respective F channel, and the direction is output via the respective D channel. The switchover between directions (movement/counter) takes place via the sign of the speed setpoint.

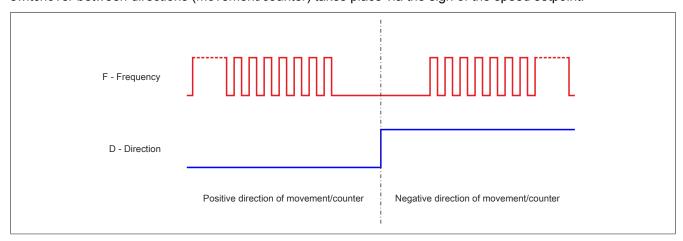



Figure 34: Frequency output via F channel, direction output via D channel

The respective output must be configured correctly in order to completely process the movement function (see 27.3.1.1 "Physical configuration").

The data points described below are available for configuring and controlling the respective movements.

# 27.3.7.1 Configuring the movement mode

Name:

X3Cfo\_Mov01Mode

X3Cfo\_Mov02Mode

These registers are used to configure how the speed setpoint is interpreted. The difference between the two modes is whether edges or periods are output for each increment of the setpoint.

| Data type | Value | Information                                                 |
|-----------|-------|-------------------------------------------------------------|
| USINT     | 0     | Edge mode: Each increment generates an edge on the output   |
|           | 1     | Pulse mode: Each increment generates a period on the output |

# Edge mode

4 increments of the speed setpoint correspond to 2 periods on the output:

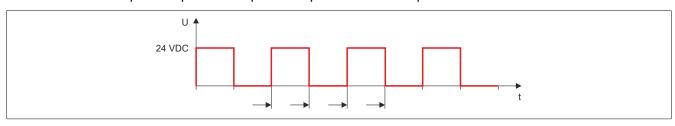



Figure 35: Interpretation of the speed setpoint with edge output for each increment

## Pulse mode

2 increments of the speed setpoint correspond to 2 periods on the output:

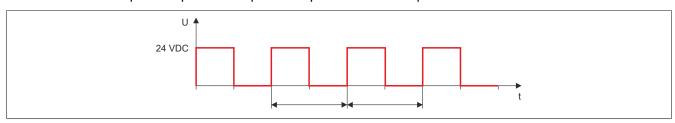



Figure 36: Interpretation of the speed setpoint with period output for each increment

# 27.3.7.2 Configuring the maximum speed of the movement

The maximum speed or output frequency of the movement is configured in order to protect the digital output, the actuator/drive being controlled and/or the mechanical system.

#### Name:

X3Cfo\_Mov01SpeedLimit

X3Cfo\_Mov02SpeedLimit

These registers are used to configure the maximum speed / output frequency permitted in the system. It is important that the limit values for edge and pulse mode are different.

## Edge mode

| Data type | Value         | Information                   |
|-----------|---------------|-------------------------------|
| UDINT     | 10 to 400,000 | Speed [increments per second] |

## Pulse mode

| Data type | Value        | Information                   |
|-----------|--------------|-------------------------------|
| UDINT     | 5 to 200,000 | Speed [increments per second] |

# 27.3.7.3 Activates the movement

When a movement is active, the two channels are operated according to the preset values.

## Name:

Mov01Enable

Mov02Enable

These registers are used to enable or disable the movement function.

#### Mov01Enable

| Data type | Value | Information                                         |
|-----------|-------|-----------------------------------------------------|
| USINT     | 0     | Movement 1 disabled                                 |
|           | 2     | Movement 1 enabled: The speed setpoint is evaluated |

## Mov02Enable

| Data type | Value | Information                                         |  |
|-----------|-------|-----------------------------------------------------|--|
| USINT     | 0     | Movement 2 disabled                                 |  |
|           | 4     | Movement 2 enabled: The speed setpoint is evaluated |  |

## 27.3.7.4 Speed and direction control of the movement

The following parameters are important for speed and direction control of the movement:



Table 23: Parameters for speed and direction control of the movement

Name: Mov01Speed Mov02Speed

These registers are used to set the speed of the movement.

| Data type | Value        | Information                                           |
|-----------|--------------|-------------------------------------------------------|
| INT       | 0 to 32,767  | Speed setpoint 0 to 100%:                             |
|           |              | Movement output F = 0 to maximum speed                |
|           |              | Positive direction of movement: Movement output D = 0 |
|           | 0 to -32,767 | Speed setpoint 0 to 100%:                             |
|           |              | Movement output F = 0 to maximum speed                |
|           |              | Negative direction of movement: Movement output D = 1 |

## 27.3.7.5 Position feedback for movement

The position feedback is represented by a fixed point value [16.16]:

- HighWord = whole number increments
- LowWord = positions after the decimal of the increments

Name:

Mov01Position

Mov02Position

These registers show the current position of the movement.

| Data type | Value                           | Information                                  |
|-----------|---------------------------------|----------------------------------------------|
| DINT      | -2,147,483,648 to 2,147,483,647 | Position value in fixed point format [16.16] |